A\

Mellanox

TECHNOLOGIES

Connect. Accelerate. Outperform?

Mellanox Adapters Programmer’s Reference
Manual (PRM)

Supporting ConnectX®-4 and ConnectX®-4 Lx

Rev 0.40

www.mellanox.com

- N

NOTE:

THIS HARDWARE, SOFTWARE OR TEST SUITE PRODUCT (“PRODUCT(S)”) AND ITS RELATED
DOCUMENTATION ARE PROVIDED BY MELLANOX TECHNOLOGIES “AS-IS” WITH ALL FAULTS OF ANY
KIND AND SOLELY FOR THE PURPOSE OF AIDING THE CUSTOMER IN TESTING APPLICATIONS THAT USE
THE PRODUCTS IN DESIGNATED SOLUTIONS. THE CUSTOMER'S MANUFACTURING TEST ENVIRONMENT
HAS NOT MET THE STANDARDS SET BY MELLANOX TECHNOLOGIES TO FULLY QUALIFY THE PRODUCT(S)
AND/OR THE SYSTEM USING IT. THEREFORE, MELLANOX TECHNOLOGIES CANNOT AND DOES NOT
GUARANTEE OR WARRANT THAT THE PRODUCTS WILL OPERATE WITH THE HIGHEST QUALITY. ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT ARE DISCLAIMED.
IN NO EVENT SHALL MELLANOX BE LIABLE TO CUSTOMER OR ANY THIRD PARTIES FOR ANY DIRECT,
INDIRECT, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES OF ANY KIND (INCLUDING, BUT NOT
LIMITED TO, PAYMENT FOR PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY FROM THE USE OF THE PRODUCT(S) AND RELATED DOCUMENTATION EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Mellanox

TECHNOLOGIES

Mellanox Technologies

350 Oakmead Parkway Suite 100
Sunnyvale, CA 94085

U.S.A.

www.mellanox.com

Tel: (408) 970-3400

Fax: (408) 970-3403

© Copyright 2016. Mellanox Technologies. All Rights Reserved.

Mellanox®, Mellanox logo, BridgeX®, CloudX logo, Connect-IB®, ConnectX®, CoolBox®, CORE-Direct®, GPUDirect®,
InfiniHost®, InfiniScale®, Kotura®, Kotura logo, Mellanox Federal Systems®, Mellanox Open Ethernet®, Mellanox
ScalableHPC®, Mellanox Connect Accelerate Outperform logo, Mellanox Virtual Modular Switch®, MetroDX®, MetroX®,
MLNX-0OS®, Open Ethernet logo, PhyX®, SwitchX®, TestX®, The Generation of Open Ethernet logo, UFM®, Virtual
Protocol Interconnect®, Voltaire® and Voltaire logo are registered trademarks of Mellanox Technologies, Ltd.

Accelio™, CyPU™, FPGADirect™, HPC-X™, InfiniBridge™, LinkX™, Mellanox Care™, Mellanox CloudX™, Mellanox
Multi-Host™, Mellanox NEO™, Mellanox PeerDirect™, Mellanox Socket Direct™, Mellanox Spectrum™, NVMeDirect™,
StPU™, Spectrum logo, Switch-IB™, Unbreakable-Link™ are trademarks of Mellanox Technologies, Ltd.

All other trademarks are property of their respective owners.

K 2 Mellanox Technologies Document Number: MLNX-15-4845 J

Table of Contents

Table Of CoMteNtS ..o vvtiitiiieeneeeeeeeeeeoeeeoeeeoseesosoossssssssssssssnsnesld
LSt Of Tables . vvviit it tiiitiieteeeeeeeeoeesoeesoseesossesossesossnssnnannees

Listof Figureso iiiiiiiiiiiiiiiii ittt iiiiiitentenenncenenscnnenneesl2

Revision HiStoryoiiiiiiiiiiiiiiiiiiiiiiiiitietereeeneeecnsssensnsnnnnns 23
Aboutthis Manualottt iiitiiiteeteenenosncnosscncnnnns 24
Intended AUdIENCE 24

Related Documentationttt e 24

Documentation CONVENLIONSottt ettt et e et ettt e e e e e e e e 24

Chapter 1 Introduction...........c.oiiuiniiiiiiiiiiiiirnenerneneeneensneennnnnns 27
1.1 Major Features SUMMAryttt e e e e e e et 27

1.2 Hardware Interfaces. i 27

1.2.1 Host Interface - PCIEXPIessottt e e 28

1211 PCLEXPISS. « oot e ettt et e e e e e e e e e 28

1.2.1.2 NC-SI (DMTF-Compliant Management Link). 28

1.2.1.3 I2C-Compatible e 28

1.2.2 Network Interface.o i 29

Chapter 2 Operational Overviewottt rieteeneenrneenennnns 30
2.1 Software Interface 30

2.2 HCA Configurationottt et et e e e e e e e e e e e 30

2.3 HCA OPCIationottt et ettt e e e e e e e e e e et e e e e e e 30

2.3. 1 WOrk QUEUES . ..ot e e 31

2.3.2 Completion Queues and Completion Events 31

233 EVeNt QUEUES . ..ottt 31

23301 IMEOITUPLS. « . ot ettt e et e e e e e e e 32

2.3.4 HCA Memory ReSOUICES oottt e e et 32

Chapter 3 Networking and Stateless Offloads.ccoviiiiiiiiiiineenrsesnrannns 34
3.1 Networking Transport ObJectsttt e e e e 34

K 0 B 1 4 1< 2 34

3.2 Networking Services USage.o vuv ettt it ettt ettt 36

32,1 Bhernet.t 36

3.3 Stateless Offloadsot 37

3.3.1 Checksum Offload 37

3.3.2 Large Send Offload (LSO)ottt e 38

3.3.3 Receive Side Scaling (RSS)ottt 38

3.3.3.1 TIR Spreading Traffic Mechanismcciiu.... 39

3.3.4 Transmit Side Scaling. 39

3.3.5 Interrupt Moderation.o it 39

3.3.6 Large Receive Offload (LRO) ot e e 39

3.3.6.1 LRO Introduction and Device Capabilities 39

3.3.6.2 LRO Session Creationueuuneitneeunnen e, 40

3.3.6.3 LRO Session Terminationcouniiuneinneinneennneen.. 40

3.3.6.4 Merging New Segments Into Existing LRO Session 41

3.3.6.5 LRO Packet Scatter t0 MEMOTYovtnt ittt 42

33.6.6 LROCQEFieldsSummaryc.iiuiiuiiniiniininenenn... 42

3.3.7 VLAN Insertion/Strippingottt ettt e e e e e e e 44

3.3.8 Packet Padding (TX).ottt e 44

3.3.9 Start of Packet Padding (RX)t e 44

3.3.10 End of Packet Padding (RX). i 45

3.4 Self-Loopback Control Using Transport Domainsot 45

Mellanox Technologies

3

J

Chapter 4

Chapter 5

Chapter 6

Chapter 7

TR T 1 <1 45
PCIInterfacecovuiuiiiiiiiiiiiiiieieeneneneneneneneneneneneness 47
4.1 PCle Compliance.ottt et e e e 47
4.2 Capabilities Reporting.ottt 47
4.3 Initialization Segment e 48
44 DataInterfacet 51
441 PCle AHIIDULES . . . o oottt et e e e e e e e 51
Memory Resources and Utilizationcciiiiiiiiiiiinreeennees 52
5.1 Interconnect Context MEMOTY.ttt et e ettt 52
5.2 Memory RESOUICESttt e e e e e e e e e e 52
5.2.1 Address Translation Tables it 52

5.3 HCA Control Objects (CONEXES) . . . v vttt ettt et e et e e e e 52
5.4 User Access Region.t 53
Address Translation and Protection0ttt iiiiiinrnnranns 54
6.1 Virtual to Physical Address Translation and Protection Checks. 54
6.1.1 Address Translation Indirection it 56

6.2 Zero-Based Virtual Address Regions and Windows. i, 57
6.3 Reserved LKey e 58
6.4 Address Translation Control StruCtUIesouu ittt 58
6.4.1 MEKeEY CONEXL. . . oottt ettt ettt e e e e e 58

6.5 Memory Key Configuration (Creation).vuu ittt et 61
SoftwareInterfaceciiiiiiiiiiiiiiienerseeesasoeessnsssassnnns 62
7.1 ISSI - Interface Step Sequence ID. 62
Tl ISSTHISEOIY . .ottt et e e e e e e e e e e e e e 62

T 10l ISSI= 0 62

7.2 User Access Region (UAR).ottt e e e 63
721 UAR SECHONS . . . ottt ettt et e e e e e e e e e e e e e 63

722 UARPage Format. 64

7.22.1 BlueFlame 65

7222 Sharing UARS.o 66

7.3 NIC_Vport Context - NIC Virtual Port Contextcoutuiin e 66
T4 WOTK QUEUCS . . . vt e ettt e et e e e e e e e e e 69
7.4.1 Work Queues Structure and ACCESSottt et 69

7411 Send QUEUE. . ..ottt 70

74.1.2 ReceIVE QUEUECttt e e e e et e 72

7.42 Doorbell Record 73

743 WQE OWNErship.ottt e e e e e 74

7.4.3.1 Posting a Work Requestto Work Queue 74

7.4.3.2 Posting Work Request on Shared Receive Queue 74

7.4.4 Work Request (WQE) Formats. e e 75

74.4.1 Send WQEFormat e 75

7.4.42 Send WQE Construction SUMMmMaryueeuneeunneennaen.. 82

7443 Receive WQE Format. i 83

7.4.44 Shared Receive WQE Format. 83

7.5 Transport Interface Receive (TIR) o i e e 84
7.6 Transport Interface Send (TIS)ot e 89
7.7 Receive Queue (RQ)ot 90
7.7.1 RQ States SUMMATY o ettt e e e e e e 96

7.7.2 RQEmor SEMAantiCsttt ettt et et e et 97

7.7.2.1 Memory RQ with Inline Memory Queuecoviiinernnn .. 97

7.72.2 RQAssociated withRMP. 97

7.8 RQTable (RQT) ..ottt ettt e e e e e e e e e e e e e e 98
7.9 Send QUEUE (SQ) . . ottt et 99
7.9.1 SQ States SUMMATYo\ttt ettt ettt e e e e 103

7.9.2 SQEITor SemMantiCsvuutin ettt 103

7.9.3 Send WQE Inline Header. i 103

Mellanox Technologies

4

J

7.93.1 Inline Modes.ttt 104

7.10 Receive Memory Pool (RMP). 104
7.10.1 RMP States Summary.ttt e 107
T AL Flow Table. . ..o e e e e e e e e e 107
7.11.1 Position in Processing Flow i e 107
7112 General StrUuCtUIE oottt e e 107
7.11.2.1 Match Criteriao ot e 108
7.11.2.2 Processing ACHIONS. v.vt ittt ettt e 108
7.11.2.3 Flow Table Chainingttt e 108
7.11.2.4 Multi-Processing Paths 108
7.11.2.5 Default Behavior 109
7.11.2.6 Invalid FIowso 109
7.11.2.7 Packet Classification Ambiguities.vurvineinennennennen .. 109
7.11.2.8 FloW StatisStiCs . .« .o vttt et et e e e e e e 109
7.11.2.9 Flow Tag@ing.ottt e e e e e e e e 109

7.11.3 Configuration Interface. 110
7.11.3.1 Allocatinga Flow Table.t 110
7.11.3.2 Selecting the Root Flow Table. i, 110
7.11.33 FlowTable Level. i e 110
7.11.3.4 Allocating a Match Criteria - Flow Groups., 110
7.11.3.5 Allocating a Flow Counter.o.iiuiinninninnnnen... 111
7.113.6 AddingaFlow e 112
7.11.3.7 Redefininga Flow ot e 112
7.11.3.8 Freeing RESOUICESo vt ti ettt et e ettt i 113
7.11.3.9 Querying Device Databaset 113
7.11.3.10 Special Flows Definitiont 114

7.11.4 Characteristics of Flow Table Types 114
71141 NICRECEIVE. . . ottt ettt e e e e e e e e e 114
71142 NICTransmit.oou ettt e e e e 114

7.12 Completion QUEUES o\ v vttt et ettt e e e e e e 114
7.12.1 Completion Queue Buffer. 115
7.02.1.1 CQEFormat. e 117

7.12.2 CQDoorBell Record 122
7.12.3 Poll for Completionttt 123
7.12.3.1 CQEOWNErship.ottt e e e e 123
7.12.3.2 Reporting Completionsouutneuee ettt 123

7.12.4 Request Completion Notification.ot 124
7.12.5 Completion Queue Update Error i 125
7.12.6 Resizing a CQ . .ottt e e e 125
7.12.7 Completion With Error. e 128
7.12.8 Completion Queue Context (CQOC).\ vi ittt et 129
7.12.9 CQto EQ Remapping.cuuvi ettt ettt 131
7.12.10 CQE TimeStampingouu vttt ettt et ettt et e e e 131
7.12.10.1 ConversiontoReal Time. 132
7.12.10.2 Synchronization with Current Time. 132

7.13 Events and Interrupts.o e 132
7131 Event QUEUESottt 132
7.13.2 EventQueue Buffer 133
7.13.2.1 EQEOWNEIShip . . . oottt ittt 133
71322 EQEFOrmat.ttt ettt et e e e 134
7.13.2.3 EQ DoorBell Registero 134

7.13.3 Completion EVentsot 135
7.13.4 Polling on EQESot 135
7.13.5 Sharing MSI-X/Interrupt Amongst EQS. i 135
7.13.6 Event Queue Mappingttt 135
7.13.7 Completion Events e 136
7.13.8 Asynchronous Events and Errors i 136
7.13.8.1 SQ/RQEVENtSot 136
7.13.8.2 Completion Queue Error Event., 137

Mellanox Technologies 5 J

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 12

7.13.9 Unaffiliated Eventsand Errors i 137

7.13.9.1 Internal EITors oo 137

7.13.9.2 Port State Change Event i 138

7.13.10 HCA Interface Events. oot e 138
7.13.10.1 Command Interface Completion Event.............................. 138

7.13.10.2 PagesRequestEvent i 139

7.13.11 Event Queue Context (EQC)t e 139

7.13.12 Hardware INterruptsottt 141

7.13.13 Interrupt Moderation.o i it 142

7.13.14 Completion Event Moderation i 142

7.13.15 Interrupt Frequency Moderation.c.ouiunirnie e 143

7.14 Command Interface 144
7.14.1 HCA Command QUEUE.\ttt ettt e e ettt e et et 144

7.14.1.1 Mailbox Format. 147

7.14.1.2 Command Data Layout i 148
Initialization and Teardown ittt iiiinnnenns 150
8.1 Initialization.o 150
8.1.1 Stage I - Device Boot From Attached NVMEM 150

8.1.2 Stage 2 - PCI Device Initialization via Boot Software Enumeration................. 150

8.2 HCA DIiver Start-Up . . . oo e ettt et ettt e e e e e e e e 151
8.3 HCA Driver Teardown and Re-initializationttt 152
8.4 Physical port Initialization and Configuration.c.. it 152

DataIntegrity.....cooviiiiiiiiiiiiieieiienenenenenencnenencnsncaensss 154

9.1 Hardware-level Data Inte@rity.ottt e 154
9.2 Software-level Data Integrity - Control Objects’ Consistency Checks................. 155
9.2.1 Device Configuration and Control Communication.c...oounoo... 155
9.2.2 Memory-resident Control ObJectsottt 155
9.2.3 Work Queues Elements Signatureiuiirninininnnennn.. 156
9.2.4 Completion and Event Queue Elements (CQEs and EQEs). 156
Address Translation and Protection Enhancements 158
10.1 Lightweight Memory Registrationottt 158
10.1.1 User-Mode Memory Registration (UMR) it 158
10.1.1.1 UMR Work Request Operationc.couuiiniinennennen .. 159
Command Registers.ooitiiiiiiiiiiiiiiiiiiiieneenenennnnnns 161
11.1 Network Ports RegiStersot e e e e 161
11.1.1 PMTU - Port MTU Re@ISter.ottt ettt e e e e e e e e e e 161
11.1.2 PTYS - Port Type and Speed Registert 162
11.1.3 PAOS - Ports Administrative and Operational Status Register 163
11.1.4 PFCC - Ports Flow Control Configuration Register 164
11.1.5 PPCNT - Ports Performance Counters Register. oot 166
Command Reference.........cooiiiiiiiiiiiiiiiiiiiiienenenenenene.. 185
12,1 INtrodUCHION . .« . oo ettt e e et e e e e e e e 185
12.2 Return Status SUMMATYottt ettt e e e e e e e et e e e e 189
12.3 Initialization and General Commands. ittt 189
12.3.1 QUERY_PAGES - Query Device Free Memory Pool Status 190

12.3.2 MANAGE_PAGES - Driver Delivers Memory Pages for the Device Usage or Returns Pages 191
12.3.3 QUERY_HCA_ CAP — Query Device Capabilities 194
12.3.3.1 HCA Device Capabilities.uuii i 196
12.3.3.2 Networking Offload Capabilities.t .. 202
12.3.3.3 Flow Table Capabilities.t 204
12.3.4 SET HCA_CAP - Set Device Capabilitiescooiiininenaaa... 208
12.3.5 QUERY_ADAPTER —Query Adapterouuineineineneennnnnnn 210
123.6 INIT HCA —INIT HCA. . ..o e e 213
12.3.7 TEARDOWN_HCA —Tear-down HCA 213
12.3.8° ENABLE HCA e e e e e e 215

Mellanox Technologies

6

J

12.4

12.5

12.6

12.7

12.8

12.9

12.10

12.11

12.12

12.13

12.14

12.3.9 DISABLE HCA. e 215
12.3.10 QUERY ISSI . .. e e e e e e 216
12311 SET ISSI . 218
12.3.12 SET DRIVER VERSION. e 218
12.3.13 ALLOC PD - Allocate Protection Domain oo, 220
12.3.14 DEALLOC _PD - De-Allocate Protection Domain 221
12.3.15 ALLOC UAR-Allocate UARottt 222
12.3.16 DEALLOC UAR -De-Allocate UARottt 223
12.3.17 CONFIG_INT _MODERATION - Configure Interrupt Moderation. 224
12.3.18 ALLOC TRANSPORT DOMAIN - Allocate Transport Domain 225
12.3.19 DEALLOC_TRANSPORT DOMAIN - De-Allocate Transport Domain 226
Registers Access Commandsou ettt e 227
12.4.1 ACCESS_REGISTERttt e 227
TPT Commands.ottt ettt e e e e e e e e e 228
12.5.1 CREATE MKEY —Create MKey Entry i 228
12.52 QUERY MKEY —Query MKey Entry i 230
12.5.3 DESTROY MKEY —Destroy MKey Entry 232
12.5.4 QUERY_SPECIAL CONTEXTS — Query Special Context Numbers 233
EQ Commands. 234
12.6.1 CREATE EQ-—Create EQ.t 234
12.6.2 DESTROY EQ-—Destroy EQ e 236
12.6.3 QUERY EQ—-Query EQ. 237
12.6.4 GEN_EQE — Generate Event Queue Entry 239
CQCOMMANAS . ..ottt 240
12.7.1 CREATE_CQ - Create Completion Queuec.oiniineinenennennan.. 240
12.7.2 DESTROY CQ —Destroy CQottt ettt e e e e 242
1273 QUERY_CQ—-Query CQ. . ..ottt e e e e e 243
12.7.4 MODIFY_CQ —Modify CQ Parametersouiiuiiineenao... 244
TIR Commandsottt e e e e e e e 247
12.8.1 CREATE TIR—Create TIR. o e 247
12.82 MODIFY_TIR —Modify TIR.o e 248
12.8.3 DESTROY _TIR —Destroy TIRot 250
12.84 QUERY_TIR —Query TIR.ttt e e e e e e e e 251
TIS Commandsttt e e 252
129.1 CREATE TIS—Create TISttt e e 252
12.9.2 MODIFY TIS—Modify TIS e 253
12.9.3 DESTROY_TIS —Destroy TIS ottt e 254
1294 QUERY _TIS—Query TIS e e e 255
Send Queue (SQ) Commandso. ittt 257
12.10.1 CREATE SQ - Create Send QUeUe.ootiiii it 257
12.10.2 MODIFY_SQ —Modify Send Queue.oviniiit i 258
12.10.3 DESTROY_SQ — Destroy a Send Queue Context.c.cvuuvureunnenann.. 260
12.10.4 QUERY_SQ—-Query Send QUEUE.o\ttt ittt i 261
Receive Queue (RQ) Commandst 262
12.11.1 CREATE RQ—Create Receive QUeuecuiitiininennnann . 262
12.11.2 MODIFY_RQ —Modify Receive Queue, 263
12.11.3 DESTROY_RQ — Destroy a Receive Queue Contextcoovvvneunnnn.. 265
12.11.4 QUERY _RQ-—Query Receive QUEUEo vt ittt e ie e e eieieen 266
RQT Commands e e e 267
12.12.1 CREATE RQT —Create RQTottt 267
12.12.2 MODIFY _RQT —-Modify RQtable., 268
12.12.3 DESTROY RQT —Destroy RQT oo 269
12.124 QUERY RQT —Query RQT e 270
Receive Memory Pool (RMP) Commandsiiiiiinii e 271
12.13.1 CREATE_RMP — Create Receive Memory Pool. 272
12.13.2 MODIFY_RMP — Modify Receive Memory Pool 273
12.13.3 DESTROY_RMP — Destroy a Receive Memory Pool Context................... 274
12.13.4 QUERY_RMP — Query Receive Memory Pool 275
Flow Table Commandsttt e e e 276

Mellanox Technologies

7

J

12.15

12.16

12.17

12.18

12.14.1 CREATE _FLOW_TABLE - Allocate a New Flow Table....................... 277
12.142 MODIFY_FLOW_TABLE - Modify aFlow Table............................ 279
12.14.3 DESTROY FLOW _TABLE - De-allocate a Flow Table 280
12.14.4 SET FLOW_TABLE ROOT - Set Flow TableRoot 282
12.14.5 QUERY _FLOW TABLE - Query Flow Table 283
12.14.6 CREATE_FLOW_GROUP - Define a New Flow Group 284
12.14.7 DESTROY_FLOW_GROUP - De-allocate a Flow Group 291
12.14.8 QUERY_FLOW_GROUP - Query Flow Groupo, 292
12.149 SET FLOW_TABLE ENTRY - Set Flow Table Entry 294
12.14.10 QUERY_FLOW_TABLE_ENTRY - Query Flow Table Entry. 297
12.14.11 DELETE FLOW_TABLE ENTRY - Invalidate Flow Table Entry.............. 299
12.14.12 ALLOC FLOW_COUNTER - Allocate a Flow Counter 300
12.14.13 DEALLOC_FLOW_COUNTER - De-Allocate Flow Counter 301
12.14.14 QUERY_FLOW_COUNTER — Query Flow Counter. 302
L2 TABLE COMMANDS . ..ottt et e e 303
12.15.1 SET L2 TABLE ENTRY -SetL2 Table Entry..................., 304
12.15.2 QUERY_L2 TABLE ENTRY - Query L2 Table Entry........................ 305
12.15.3 DELETE L2 TABLE ENTRY - Invalidate Flow Table Entry 306
Vport Commandst 307
12.16.1 QUERY_VPORT STATE —Query Vport Statec.ooiiiiinnenan.. 308
12.16.2 MODIFY_VPORT STATE —Modify VportState, 309
12.16.3 QUERY_NIC_VPORT_CONTEXT — Query NIC Vport Context 310
12.164 MODIFY_NIC VPORT CONTEXT — Modify NIC Vport Context 311
Vport Counters CommandSttt ettt et e 312
12.17.1 QUERY_VPORT COUNTER — Query VportCounter 313
Miscellaneous Commands.ttt 315
12.18.1 NOP Command.t 315

Mellanox Technologies

8

J

List of Tables

Table 1:
Table 2:
Table 3:
Table 4:
Table 5:
Table 6:
Table 7:
Table 8:
Table 9:

Table 10:
Table 11:
Table 12:
Table 13:
Table 14:
Table 15:
Table 16:
Table 17:
Table 18:
Table 19:
Table 20:
Table 21:
Table 22:
Table 23:
Table 24:
Table 25:
Table 26:
Table 27:
Table 28:
Table 29:
Table 30:
Table 31:
Table 32:
Table 33:
Table 34:
Table 35:
Table 36:
Table 37:
Table 38:

PCIDevice ID e 24
Reference Documents i 24
Summary of Features Per Device Adapter iiiininon.. 27
CQE Checksum Behavior e 38
LRO CQE Fields Summaryttt e 42
PCI Capabilities SUMMATIYttt ettt ettt et et 48
Initialization Segmentt 48
Initialization Segment Field Descriptionsoiiiiinnnenn.n.. 49
MKey Context Format i e 58
MKey Context Fields e 59
Memory Translation Table (MTT) Entry Layout 60
Memory Translation Table MTT) Entryo ... 60
UAR Page Format 64
CQ DoorBell Register Field Descriptionsc.ouiuiitirineenennan.. 64
NIC Vport Context Layout it 66
NIC Vport Context Field Descriptionsouiriiiintnninrnenen... 67
ViIan Layout e e 68
Vian Field DesCriptionsuntn ittt ettt ettt 68
MAC Address Layoutott it e e 69
MAC Address Field Descriptionsottt e e e e e 69
Receive Queue - Scatter Entry Format 72
Receive Queue - Signature Entry Format 72
Receive Queue - Signature Entry Fields 72
Doorbell Record format 73
General - Ctrl Segment Format 75
General Ctrl Segment Field 76
Eth Segment Format 77
Eth Segment Fields 77
Padding Segment Format e 78
Padding Segment Fields i i 78
UMR Work Request Format ittt 78
UMR Control Segment Layout i, 79
UMR Control Segment Fieldsc.oiiiiiiii i, 79
UMR Pointer Description Argument Format 80
UMR Control Segment Fields 80
UMR Memory Buffer (KLM) Description Argument Format 80
UMR Memory Buffer (KLM) Fields Descriptionccivni.... 81
Data Segment Format - Memory Pointero uon.. 81

Mellanox Technologies

9

J

Table 39:
Table 40:
Table 41:
Table 42:
Table 43:
Table 44
Table 45:
Table 46:
Table 47:
Table 48:
Table 49:
Table 50:
Table 51:
Table 52:
Table 53:
Table 54:
Table 55:
Table 56:
Table 57:
Table 58:
Table 59:
Table 60:
Table 61:
Table 62:
Table 63:
Table 64:
Table 65:
Table 66:
Table 67:
Table 68:
Table 69:
Table 70:
Table 71:
Table 72:
Table 73:
Table 74:
Table 75:
Table 76:
Table 77:
Table 78:

Data Segment Format - Inline Data i iiiireno... 81
Receive Data Segment Format 82
WQE Construction SUMmarytttn e, 83
Shared Receive WQE Format 83
Next/Ctrl Segment Fields - Shared Receive WQE 83
TIR Context Format e e et 84
TIR Context Fields e 85
RX HASH FIELD SELECT Structure Layout, 87
RX HASH FIELD_ SELECT Structure Field Descriptions 88
MODIFY _TIR Bitmask i 88
TIS Context Format e 89
TIS Context Fields e e e 90
MODIFY _TISBitmasko e e 90
RQ Context Format e 91
RQ Context Fields e 92
Work Queue (WQ) Format e 93
Work Queue (WQ) Fields e e 94
CREATE_RQ and MODIFY _RQ Bitmaskcc.oouiiiiiiiiii., 95
RQ States Summary i e 96
RQT Context Format e e 98
RQT Context Fields e e 98
SQ Context Format e 100
SQContext Fields 101
CREATE_SQ and MODIFY _SQ Bitmaskoouuuiieiaaiai... 102
SQ States SUMMAIYottt e e e e e 103
RMP Context Format e e e 105
RMP Context Fields e 106
CREATE _RMP and MODIFY RMP Bitmask 106
64B Completion Queue Entry Format Layout, 117
Completion Queue Entry Fields i i, 118
CQ Doorbell Record Layoutt e 122
CQ DoorBell Record Field Descriptionsc.ouuiniiiniinenenan.. 122
ARM CQ DoorBell Ringing With Repeatedemd sn 124
Resize CQE Layout i e e e et e 127
Completion with Error CQE Layout 128
Completion with Error CQE Field Description, 128
Completion Queue Context Layout 129
Completion Queue Context Field Descriptionscciiiininann.. 130
Event Queue Entry Layout 134
Event Queue Entry Field Descriptionst 134

Mellanox Technologies

10

J

Table 79:
Table 80:
Table 81:
Table 82:
Table 83:
Table 84:
Table 85:
Table 86:
Table 87:
Table 88:
Table 89:
Table 90:
Table 91:
Table 92:
Table 93:
Table 94:
Table 95:
Table 96:
Table 97:
Table 98:
Table 99:

Table 100:
Table 101:
Table 102:
Table 103:
Table 104:
Table 105:
Table 106:
Table 107:
Table 108:
Table 109:
Table 110:
Table 111:
Table 112:
Table 113:
Table 114:
Table 115:
Table 116:
Table 117:
Table 118:

Event Typeand Codingttt e 135
Event data Field - Completion Event Layout 136
Event data Field - Completion Event Field Descriptions 136
Event data Field - SQ/RQ Events Layout iiion.n. 136
Event data Field - SQ/RQ Events Field Descriptionsc.covu... 137
Event data Field - Completion Queue Error Event Layout 137
Event_data Field - Completion Queue Error Event Field Descriptions 137
Event data Field - Port State Change Event Layout 138
Event data Field - Port State Change Event Field Descriptions 138
Port State Change Event Subtype i i 138
Event data Field - Command interface Completion Event Layout 138
Event data Field - Command Interface Completion Event Field Descriptions 139
Pages Request Event Layout i 139
Pages Request Event Field Descriptionsoiiiininrninennn.. 139
Event Queue Context Layout 139
Event Queue Context Field Descriptions i, 140
Command Queue Entry Layout 145
Command Queue Entry Field Descriptions, 146
Command Interface Mailbox Layout it .. 147
Command Interface Mailbox Field Descriptions 148
Command Input Data Layoutttt 149
Command Input Data Field Descriptionst .. 149
Command Output Data Layoutt 149
Command Output Data Field Descriptions i, 149
Data Integrity Detection and Reporting i, 154
Ports Register Summaryo it 161
PMTU - Port MTU Register Layout 161
PMTU - Port MTU Register Fields i, 161
PTYS - Port Type and Speed Register Fields 162
PTYS - Port Type and Speed Register Fields 163
PAOS - Ports Administrative and Operational Status Register Layout 163
PAOS - Ports Administrative and Operational Status Register Fields 164
PFCC - Ports Flow Control Configuration Register Layout 164
PFCC - Ports Flow Control Configuration Register Fields 165
PPCNT - Ports Performance Counters Register Layout 166
PPCNT - Ports Performance Counters Register Fields 167
Ethernet IEEE 802.3 Counters Group Data Layout 168
Ethernet IEEE 802.3 Counter Group Fieldsoia.. 169
Ethernet RFC 2863 Counter Group Data Layout 171
Ethernet RFC 2863 Counter Group Fields 172

Mellanox Technologies

11

J

Table 119:
Table 120:
Table 121:
Table 122:
Table 123:
Table 124:
Table 125:
Table 126:
Table 127:
Table 128:
Table 129:
Table 130:
Table 131:
Table 132:
Table 133:
Table 134:
Table 135:
Table 136:
Table 137:
Table 138:
Table 139:
Table 140:
Table 141:
Table 142:
Table 143:
Table 144:
Table 145:
Table 146:
Table 147:
Table 148:
Table 149:
Table 150:
Table 151:
Table 152:
Table 153:
Table 154:
Table 155:
Table 156:
Table 157:
Table 158:

Ethernet RFC 2819 Counter Group Data Layout 174
Ethernet RFC 2819 Counter Group Fields 175
Ethernet RFC 3635 Counter Group Data Layout 178
Ethernet RFC 3635 Counter Group Fields 179
Ethernet Per Priority Group Data Layouto iiininnnn.. 181
Ethernet Per Priority Group Fields i, 182
Ethernet Per Traffic Class Group datalayout................................. 183
Ethernet Per Traffic Class Group Fields 184
Commands List Sorted by Opcodet 185
Return Status Summary 189
Initialization and General Commandsttt .. 190
QUERY PAGES Input Structure Layout 191
QUERY_ PAGES Input Structure Field Descriptions 191
QUERY_ PAGES Output Structure Layout 191
QUERY_PAGES Output Structure Field Descriptions 191
MANAGE PAGES Input Structure Layout, 192
MANAGE_PAGES Input Structure Field Descriptions 192
MANAGE PAGES Output Structure Layout 192
MANAGE PAGES Output Structure Field Descriptions 193
Physical Address Structure (PAS) Layout, 193
Physical Address_Structure (PAS) Field Descriptions 193
QUERY _HCA CAP Input Structure Layout 194
QUERY_HCA_ CAP Input Structure Field Descriptions 194
QUERY_HCA_ CAP Output Structure Layout oo, 194
QUERY_HCA CAP Output Structure Field Descriptions 194
HCA Capabilities Layoutititi i ittt e e e 196
HCA Capabilities Field Descriptions i, 198
Per Protocol Networking Offload Capabilities Layout 202
Per Protocol Networking Offload Capabilities Field Descriptions 203
Flow Table NIC Capabilities Layout 204
Flow Table NIC Capabilities Field Descriptionscciuiron... 205
Flow Table Properties Layouto .. 205
Flow Table Properties Field Descriptions 206
Flow Table Fields Supported Format i, 207
Flow Table Fields Supported Fields 208

SET HCA CAP Input Structure Layout 208
SET HCA CAP Input Structure Field Descriptions 209
SET HCA CAP Output Structure Layout, 209
SET HCA_ CAP Output Structure Field Descriptions 209
QUERY_ ADAPTER Input Structure Layout 210

Mellanox Technologies

12

J

Table 159:
Table 160:
Table 161:
Table 162:
Table 163:
Table 164:
Table 165:
Table 166:
Table 167:
Table 168:
Table 169:
Table 170:
Table 171:
Table 172:
Table 173:
Table 174:
Table 175:
Table 176:
Table 177:
Table 178:
Table 179:
Table 180:
Table 181:
Table 182:
Table 183:
Table 184:
Table 185:
Table 186:
Table 187:
Table 188:
Table 189:
Table 190:
Table 191:
Table 192:
Table 193:
Table 194:
Table 195:
Table 196:
Table 197:
Table 198:

QUERY_ ADAPTER Input Structure Field Descriptions 210
QUERY_ADAPTER Output Structure Layout 210
QUERY_ADAPTER Output Structure Field Descriptions 211
QUERY_ ADAPTER Parameters Block Layout 211
QUERY_ADAPTER Parameters Block Field Descriptions 211
PSID Character Offsets (Example is in Parentheses) 212
INIT HCA Input Structure Layoutt 213
INIT_HCA Input Structure Field Descriptionscovuien.... 213
INIT_HCA Output Structure Layout i, 213
INIT_HCA Output Structure Field Descriptions, 213
TEARDOWN_HCA Input Structure Layout i, 214
TEARDOWN_HCA Input Structure Field Descriptions 214
TEARDOWN_HCA Output Structure Layout, 214
TEARDOWN_ HCA Output Structure Field Descriptions 214
ENABLE HCA Input Structure Layout i, 215
ENABLE HCA Input Structure Field Descriptions 215
ENABLE HCA Output Structure Layout0ttt 215
ENABLE HCA Output Structure Field Descriptions 215
DISABLE HCA Input Structure Layoutc. i, 215
DISABLE HCA Input Structure Field Descriptions 216
DISABLE HCA Output Structure Layout 216
DISABLE HCA Output Structure Field Descriptions 216
QUERY ISSI Input Structure Layout, 216
QUERY _ISSI Input Structure Field Descriptionso, 217
QUERY ISSI Output Structure Layout, 217
QUERY _ISSI Output Structure Field Descriptionsccovuin.. 217
SET ISSIInput Structure Layout.......... 218
SET ISSI Input Structure Field Descriptionsccu i, 218
SET ISSI Output Structure Layout0 it 218
SET_ISSI Output Structure Field Descriptions oivon... 218
SET DRIVER VERSION Input Structure Layout 219
SET DRIVER_VERSION Input Structure Field Descriptions 219
SET DRIVER VERSION Output Structure Layout 219
SET DRIVER VERSION Output Structure Field Descriptions 219
ALLOC _PD Input Structure Layoutitiriitnnnnnnnnn. 220
ALLOC_PD Input Structure Field Descriptions, 220
ALLOC PD Output Structure Layout i, 220
ALLOC_PD Output Structure Field Descriptionscccvininenon.. 220
DEALLOC PD Input Structure Layout 0. 221
DEALLOC _PD Input Structure Field Descriptions 221

Mellanox Technologies

13

J

Table 199:
Table 200:
Table 201:
Table 202:
Table 203:
Table 204:
Table 205:
Table 206:
Table 207:
Table 208:
Table 209:
Table 210:
Table 211:
Table 212:
Table 213:
Table 214:
Table 215:
Table 216:
Table 217:
Table 218:
Table 219:
Table 220:
Table 221:
Table 222:
Table 223:
Table 224:
Table 225:
Table 226:
Table 227:
Table 228:
Table 229:
Table 230:
Table 231:
Table 232:
Table 233:
Table 234:
Table 235:
Table 236:
Table 237:
Table 238:

DEALLOC PD Output Structure Layoutttt 221
DEALLOC_PD Output Structure Field Descriptions 221
ALLOC UAR Input Structure Layout 222
ALLOC _UAR Input Structure Field Descriptionsccouiiiinan... 222
ALLOC _UAR Output Structure Layout i, 222
ALLOC_UAR Output Structure Field Descriptions 222
DEALLOC UAR Input Structure Layout iiiriiianan... 223
DEALLOC_UAR Input Structure Field Descriptions 223
DEALLOC _UAR Output Structure Layout, 223
DEALLOC UAR Output Structure Field Descriptions 223
CONFIG_INT MODERATION Input Structure Layout 224
CONFIG_INT _MODERATION Input Structure Field Descriptions 224
CONFIG_INT _MODERATION Output Structure Layout 224
CONFIG_INT MODERATION Output Structure Field Descriptions 224
ALLOC TRANSPORT DOMAIN Input Structure Layout 225
ALLOC TRANSPORT DOMAIN Input Structure Field Descriptions 225
ALLOC _TRANSPORT_DOMAIN Output Structure Layout 225
ALLOC_TRANSPORT_DOMAIN Output Structure Field Descriptions 225
DEALLOC_TRANSPORT DOMAIN Input Structure Layout 226
DEALLOC_TRANSPORT DOMAIN Input Structure Field Descriptions 226
DEALLOC_TRANSPORT DOMAIN Output Structure Layout 226
DEALLOC TRANSPORT DOMAIN Output Structure Field Descriptions 226
ACCESS_REGISTER Input Structure Layout 227
ACCESS REGISTER Input Structure Field Descriptions 227
ACCESS _REGISTER Output Structure Layout 227
ACCESS _REGISTER Output Structure Field Descriptions 228
TPT Commandsttt e e e 228
CREATE MKEY Input Structure Layout i .. 228
CREATE_MKEY Input Structure Field Descriptions 229
CREATE MKEY Output Structure Layout 230
CREATE MKEY Output Structure Field Descriptions 230
QUERY_MKEY Input Structure Layout, 230
QUERY_MKEY Input Structure Field Descriptions 230
QUERY_ MKEY Output Structure Layout, 231
QUERY_MKEY Output Structure Field Descriptions 231
DESTROY MKEY Input Structure Layout i, 232
DESTROY MKEY Input Structure Field Descriptions 232
DESTROY MKEY Output Structure Layout 232
DESTROY_MKEY Output Structure Field Descriptions 232
QUERY_ SPECIAL CONTEXTS Input Structure Layout 233

Mellanox Technologies

14

J

Table 239:
Table 240:
Table 241:
Table 242:
Table 243:
Table 244:
Table 245:
Table 246:
Table 247:
Table 248:
Table 249:
Table 250:
Table 251:
Table 252:
Table 253:
Table 254:
Table 255:
Table 256:
Table 257:
Table 258:
Table 259:
Table 260:
Table 261:
Table 262:
Table 263:
Table 264:
Table 265:
Table 266:
Table 267:
Table 268:
Table 269:
Table 270:
Table 271:
Table 272:
Table 273:
Table 274:
Table 275:
Table 276:
Table 277:
Table 278:

QUERY_SPECIAL CONTEXTS Input Structure Field Descriptions 233
QUERY_SPECIAL CONTEXTS Output Structure Layout 233
QUERY_SPECIAL CONTEXTS Output Structure Field Descriptions 233
EQ Commands OVEIVIEWttt e et et et e 234
CREATE EQ Input Structure Layoutot .. 235
CREATE_EQ input Structure Field Descriptions 235
CREATE EQ Output Structure Layoutt .. 236
CREATE EQ Output Structure Field Descriptions, 236
DESTROY EQ Input Structure Layout i, 236
DESTROY_ EQ Input Structure Field Descriptions 236
DESTROY EQ Output Structure Layout iitiriirnnnn.. 237
DESTROY_EQ Output Structure Field Descriptions 237
QUERY _EQ Input Structure Layout0ttt .. 237
QUERY_EQ Input Structure Field Descriptionsccoviiiinen... 237
QUERY _EQ Output Structure Layout i 238
QUERY _EQ Output Structure Field Descriptionsccoiin.... 238
GEN_EQE Input Structure Layout i i 239
GEN_EQE Input Structure Field Descriptions 239
GEN_EQE Output Structure Layout i .. 239
GEN_EQE Output Structure Field Descriptionsc.cooiiuinann.. 239
CQ Commands OVEIVIEWottt e e e e et 240
CREATE CQ Input Structure Layout, 240
CREATE_CQ Input Structure Field Descriptionscou.... 241
CREATE_CQ Output Structure Field Descriptions, 241
CREATE CQ Output Structure Field Descriptions, 241
DESTROY CQ Input Structure Layout i, 242
DESTROY_CQ Input Structure Field Descriptionscovvn... 242
DESTROY_ CQ Output Structure Layout0iitiiiriiinnennn. 242
DESTROY_CQ Output Structure Field Descriptionsco.... 242
QUERY_CQ Input Structure Layout 243
QUERY _CQ Input Structure Field Descriptionsccoitinin.... 243
QUERY _CQ Output Structure Layoutt 243
QUERY_CQ Output Structure Layoutt 244
MODIFY _CQ Input Structure Layoutttt 244
MODIFY_CQ Input Structure Field Descriptionsc.ooivn.... 245
MODIFY_FIELD SELECT Structure Layout 245
MODIFY FIELD SELECT Structure Field Descriptions 246
RESIZE FIELD SELECT Structure Layouto, 246
RESIZE FIELD_ SELECT Structure Field Descriptions 246
MODIFY_CQ Output Structure Field Descriptions 246

Mellanox Technologies

15

J

Table 279:
Table 280:
Table 281:
Table 282:
Table 283:
Table 284:
Table 285:
Table 286:
Table 287:
Table 288:
Table 289:
Table 290:
Table 291:
Table 292:
Table 293:
Table 294:
Table 295:
Table 296:
Table 297:
Table 298:
Table 299:
Table 300:
Table 301:
Table 302:
Table 303:
Table 304:
Table 305:
Table 306:
Table 307:
Table 308:
Table 309:
Table 310:
Table 311:
Table 312:
Table 313:
Table 314:
Table 315:
Table 316:
Table 317:
Table 318:

MODIFY_CQ Output Structure Field Descriptions 246
TIR Commands OVEIVIEWttt ettt ettt e 247
CREATE TIR Input Structure Layout 247
CREATE TIR Input Structure Field Descriptions 247
CREATE TIR Output Structure Layoutt .. 248
CREATE _TIR Output Structure Field Descriptions 248
MODIFY TIR Input Structure Layout, 248
MODIFY_TIR Input Structure Field Descriptions 249
MODIFY_TIR Output Structure Layout 249
MODIFY_TIR Output Structure Field Descriptions 249
DESTROY TIR Input Structure Layout0iitiiinrenennennn. 250
DESTROY_TIR Input Structure Field Descriptions 250
DESTROY TIR Output Structure Layout i, 250
DESTROY_TIR Output Structure Field Descriptions 250
QUERY TIR Input Structure Layout i 251
QUERY _TIR input Structure Field Descriptions 251
QUERY _TIR Output Structure Layoutot .. 251
QUERY_TIR Output Structure Field Descriptions 251
TIS Commands OVEIVIEWttt et e 252
CREATE TIS Input Structure Layout i, 252
CREATE _TIS Input Structure Field Descriptions 252
CREATE TIS Output Structure Layout, 253
CREATE_TIS Output Structure Field Descriptions 253
MODIFY _TIS Input Structure Layout, 253
MODIFY _TIS Input Structure Field Descriptionsccouou... 254
MODIFY_TIS Output Structure Layout ittt 254
MODIFY_TIS Output Structure Field Descriptions 254
DESTROY TIS Input Structure Layout i, 254
DESTROY _TIS Input Structure Field Descriptions 255
DESTROY TIS Output Structure Layout 255
DESTROY _TIS Output Structure Field Descriptions 255
QUERY TIS Input Structure Layout ot 255
QUERY _TIS input Structure Field Descriptions 256
QUERY _TIS Output Structure Layoutc.cc.iitiriiiirnenenn .. 256
QUERY _TIS Output Structure Field Descriptionscccvunin... 256
SQ Commands OVEIVIEWottt e et e e e e et e 257
CREATE SQ Input Structure Layoutcc.iiiiriiiirnnnenn .. 257
CREATE_SQ Input Structure Field Descriptions 257
CREATE SQ Output Structure Layout, 258
CREATE SQ Output Structure Field Descriptionscccouou.... 258

Mellanox Technologies

16

J

Table 319:
Table 320:
Table 321:
Table 322:
Table 323:
Table 324:
Table 325:
Table 326:
Table 327:
Table 328:
Table 329:
Table 330:
Table 331:
Table 332:
Table 333:
Table 334:
Table 335:
Table 336:
Table 337:
Table 338:
Table 339:
Table 340:
Table 341:
Table 342:
Table 343:
Table 344:
Table 345:
Table 346:
Table 347:
Table 348:
Table 349:
Table 350:
Table 351:
Table 352:
Table 353:
Table 354:
Table 355:
Table 356:
Table 357:
Table 358:

MODIFY _SQ Input Structure Layoutt 258
MODIFY_SQ Input Structure Field Descriptionsc.couon.... 259
MODIFY_SQ Output Structure Layout 259
MODIFY_SQ Output Structure Field Descriptionscoouon... 259
DESTROY SQ Input Structure Layout i, 260
DESTROY_SQ Input Structure Field Descriptions 260
DESTROY SQ Output Structure Layout, 260
DESTROY_SQ Output Structure Field Descriptionsco.... 260
QUERY_SQ Input Structure Layout i 261
QUERY _SQ input Structure Field Descriptionscccuuin.... 261
QUERY_SQ Output Structure Layout, 261
QUERY_SQ Output Structure Field Descriptions 261
RQ Commands OVEervieWt e e e e 262
CREATE RQ Input Structure Layout 262
CREATE_RQ Input Structure Field Descriptions 262
CREATE RQ Output Structure Layout 263
CREATE_ RQ Output Structure Field Descriptionsccoou.... 263
MODIFY _RQ Input Structure Layout it 263
MODIFY_ RQ Input Structure Field Descriptions 264
MODIFY_RQ Output Structure Layout 264
MODIFY_RQ Output Structure Field Descriptions 264
DESTROY RQ Input Structure Layoutt 265
DESTROY_RQ Input Structure Field Descriptions 265
DESTROY RQ Output Structure Layouto, 265
DESTROY_ RQ Output Structure Field Descriptions 265
QUERY _RQ Input Structure Layoutt 266
QUERY_RQ input Structure Field Descriptions, 266
QUERY _RQ Output Structure Layout 266
QUERY_RQ Output Structure Field Descriptions, 266
RQT Commands OVEIrVIEWottt e e e 267
CREATE RQT Input Structure Layoutiitiiinnenn .. 267
CREATE_RQT Input Structure Field Descriptions 267
CREATE RQT Output Structure Layout 268
CREATE RQT Output Structure Field Descriptions 268
MODIFY RQT Input Structure Layout, 268
MODIFY_RQT Input Structure Field Descriptions 268
MODIFY RQT Output Structure Layout 0iiiiriieanan.. 269
MODIFY_RQT Output Structure Field Descriptions 269
DESTROY RQT Input Structure Layout 269
DESTROY RQT Input Structure Field Descriptions 270

Mellanox Technologies

17

J

Table 359:
Table 360:
Table 361:
Table 362:
Table 363:
Table 364:
Table 365:
Table 366:
Table 367:
Table 368:
Table 369:
Table 370:
Table 371:
Table 372:
Table 373:
Table 374:
Table 375:
Table 376:
Table 377:
Table 378:
Table 379:
Table 380:
Table 381:
Table 382:
Table 383:
Table 384:
Table 385:
Table 386:
Table 387:
Table 388:
Table 389:
Table 390:
Table 391:
Table 392:
Table 393:
Table 394:
Table 395:
Table 396:
Table 397:
Table 398:

DESTROY RQT Output Structure Layoutccitiiiiriiennanan. 270
DESTROY_RQT Output Structure Field Descriptions 270
QUERY RQT Input Structure Layout i 270
QUERY_RQT input Structure Field Descriptionsccovinin.... 270
QUERY_RQT Output Structure Layoutt .. 271
QUERY_RQT Output Structure Field Descriptions 271
RMP Commands OVErVIEWttt et 271
CREATE RMP Input Structure Layout 272
CREATE _RMP Input Structure Field Descriptions 272
CREATE RMP Output Structure Layout iiiiiirnen.... 272
CREATE_RMP Output Structure Field Descriptions 273
MODIFY _RMP Input Structure Layout i, 273
MODIFY_ RMP Input Structure Field Descriptions 273
MODIFY_ RMP Output Structure Layout iiiitiiennnnn. 274
MODIFY_ RMP Output Structure Field Descriptions 274
DESTROY RMP Input Structure Layout, 274
DESTROY_RMP Input Structure Field Descriptions 275
DESTROY RMP Output Structure Layout, 275
DESTROY_ RMP Output Structure Field Descriptions 275
QUERY _RMP Input Structure Layout 275
QUERY_RMP input Structure Field Descriptions, 276
QUERY _RMP Output Structure Layout it .. 276
QUERY_RMP Output Structure Field Descriptions 276
Flow Table Commands OVEIrvIieWc..oouiiiinninennnennenenn. 276
CREATE FLOW_TABLE Input Structure Layout 277
CREATE_FLOW_TABLE - Input Structure Field Description 278
CREATE FLOW_TABLE Output Structure Layout 278
CREATE FLOW_TABLE - Output Structure Field Description 278
FLOW TABLE CONTEXT Structure Layout0iiiiiirnnen... 278
FLOW TABLE CONTEXT Field Descriptionscovivivunenn... 279
MODIFY FLOW_TABLE Input Structure Layout 279
MODIFY_FLOW_TABLE - Input Structure Field Description 279
MODIFY_FLOW_TABLE Output Structure Layout 280
MODIFY FLOW_TABLE - Output Structure Field Description 280
DESTROY FLOW_TABLE Input Structure Layout 280
DESTROY_FLOW_TABLE - Input Structure Field Descriptions 281
DESTROY FLOW_ TABLE Output Structure Layout 281
DESTROY_FLOW_TABLE - Output Structure Field Description 281
SET FLOW_TABLE ROOT Input Structure Layout 282
SET FLOW _TABLE ROOT - Input Structure Field Descriptions 282

Mellanox Technologies

18

J

Table 399:
Table 400:
Table 401:
Table 402:
Table 403:
Table 404:
Table 405:
Table 406:
Table 407:
Table 408:
Table 409:
Table 410:
Table 411:
Table 412:
Table 413:
Table 414:
Table 415:
Table 416:
Table 417:
Table 418:
Table 419:
Table 420:
Table 421:
Table 422:
Table 423:
Table 424:
Table 425:
Table 426:
Table 427:
Table 428:
Table 429:
Table 430:
Table 431:
Table 432:
Table 433:
Table 434:
Table 435:
Table 436:
Table 437:
Table 438:

SET FLOW _TABLE ROOT Output Structure Layout 282
SET FLOW_TABLE ROOT - Output Structure Field Description 283
QUERY_ FLOW_TABLE Input Structure Layout 283
QUERY_FLOW_TABLE Input Structure Field Descriptions 283
QUERY _FLOW_TABLE Output Structure Layout 283
QUERY_FLOW_TABLE Output Structure Field Descriptions 284
CREATE FLOW_GROUP Input Structure Layout 284
CREATE_FLOW_GROUP - Input Structure Field Description 285
Flow Table Entry Match Parameters Format 285
Flow Table Entry Match Parameter Field Description 286
Flow Table Entry Match Set Layer 2-4 Format 286
Flow Table Entry Match Set Layer 2-4 Field Description 287
IPv6 Address Layoutiniiti e e 288
IPv6 Address Field Descriptionscouirininirrrrnnanannnnn. 288
IPv4 Address Layout 288
IPv4 Address Field Descriptionsotiiiriit it 289
Flow Table Entry Match Set Misc Parameters Format 289
Flow Table Entry Parameter Set Misc Fields 290
CREATE FLOW_GROUP Output Structure Layout 290
CREATE_FLOW_GROUP - Output Structure Field Description 290
DESTROY FLOW_GROUP Input Structure Layout 291
DESTROY FLOW_GROUP Input Structure Field Description 291
DESTROY FLOW_GROUP Output Structure Layout 291
DESTROY_FLOW_GROUP Output Structure Field Descriptions 292
QUERY_FLOW_GROUP Input Structure Layout 292
QUERY_FLOW_GROUP Input Structure Field Descriptions 292
QUERY_FLOW_GROUP Output Structure Layout 293
QUERY_FLOW_GROUP Output Structure Field Descriptions 293
SET FLOW_TABLE ENTRY Input Structure Layout 294
SET FLOW_TABLE ENTRY - Input Structure Field Descriptions 294
FLOW_CONTEXT Structure Layoutttt 295
FLOW_CONTEXT Field Descriptionsouuiutninininennenenenenns 295
SET FLOW_TABLE ENTRY - Output Structure Layout 296
SET FLOW _TABLE ENTRY Output Structure Field Descriptions 296
Destination Format Structure Layout 297
Destination Format Field Descriptions, 297
Flow Counter List Entry Format Structure Layout 297
Flow Counter List Entry Format Field Descriptions 297
QUERY _FLOW _TABLE ENTRY Input Structure Layout 297
QUERY _FLOW _TABLE ENTRY Input Structure Field Descriptions 298

Mellanox Technologies

19

J

Table 439:
Table 440:
Table 441:
Table 442:
Table 443:
Table 444:
Table 445:
Table 446:
Table 447:
Table 448:
Table 449:
Table 450:
Table 451:
Table 452:
Table 453:
Table 454:
Table 455:
Table 456:
Table 457:
Table 458:
Table 459:
Table 460:
Table 461:
Table 462:
Table 463:
Table 464:
Table 465:
Table 466:
Table 467:
Table 468:
Table 469:
Table 470:
Table 471:
Table 472:
Table 473:
Table 474:
Table 475:
Table 476:
Table 477:
Table 478:

QUERY_FLOW_TABLE ENTRY Output Structure Layout 298
QUERY_FLOW_TABLE _ENTRY Output Structure Field Descriptions 298
DELETE FLOW_TABLE ENTRY Input Structure Layout 299
DELETE FLOW_TABLE ENTRY Input Structure Field Descriptions 299
DELETE FLOW_TABLE ENTRY Output Structure Layout 300
DELETE FLOW_TABLE ENTRY Output Structure Field Descriptions 300
ALLOC FLOW_COUNTER Input Structure Layout 300
ALLOC_FLOW_COUNTER Input Structure Field Descriptions 300
ALLOC FLOW_COUNTER Output Structure Layout 300
ALLOC _FLOW_COUNTER Output Structure Field Descriptions 301
DEALLOC_FLOW_COUNTER Input Structure Layout 301
DEALLOC_FLOW_COUNTER Input Structure Field Descriptions 301
DEALLOC FLOW_COUNTER Output Structure Layout 301
DEALLOC_FLOW_COUNTER Output Structure Field Descriptions 302
QUERY _FLOW_COUNTER Input Structure Layout 302
QUERY_FLOW_COUNTER Input Structure Field Descriptions 302
QUERY_FLOW_COUNTER Output Structure Layout 303
QUERY_FLOW_COUNTER Output Structure Field Descriptions 303
SET L2 TABLE ENTRY Input Structure Layout 304
SET L2 TABLE ENTRY - Input Structure Field Descriptions 304
SET L2 TABLE ENTRY - Output Structure Layout 304
SET L2 TABLE ENTRY Output Structure Field Descriptions 305
QUERY L2 TABLE ENTRY Input Structure Layout 305
QUERY_L2 TABLE _ENTRY Input Structure Field Descriptions 305
QUERY_L2 TABLE ENTRY Output Structure Layout 305
QUERY_L2 TABLE_ENTRY Output Structure Field Descriptions 306
DELETE L2 TABLE ENTRY Input Structure Layout 306
DELETE L2 TABLE ENTRY Input Structure Field Descriptions 307
DELETE L2 TABLE ENTRY Output Structure Layout 307
DELETE L2 TABLE ENTRY Output Structure Field Descriptions 307
Vport Commands OVEIVIEWo v vttt et et e e e eens 307
QUERY_VPORT STATE Input Structure Layout 308
QUERY_VPORT_STATE Input Structure Field Descriptions 308
QUERY _VPORT STATE Output Structure Layout 308
QUERY_VPORT STATE Output Structure Field Descriptions 308
MODIFY_ VPORT STATE Input Structure Layout 309
MODIFY VPORT STATE Input Structure Field Descriptions 309
MODIFY_ VPORT STATE Output Structure Layout 309
MODIFY_VPORT_STATE Output Structure Field Descriptions 310
QUERY _NIC VPORT CONTEXT Input Structure Layout 310

Mellanox Technologies

20

J

Table 479:
Table 480:
Table 481:
Table 482:
Table 483:
Table 484:
Table 485:
Table 486:
Table 487:
Table 488:
Table 489:
Table 490:
Table 491:
Table 492:
Table 493:
Table 494:
Table 495:
Table 496:

QUERY NIC VPORT CONTEXT Input Structure Field Descriptions 310
QUERY _NIC VPORT CONTEXT Output Structure Layout 310
QUERY_NIC VPORT CONTEXT Output Structure Field Descriptions 311
MODIFY_ NIC VPORT CONTEXT Input Structure Layout 311
MODIFY_NIC VPORT_CONTEXT Input Structure Field Descriptions 311
MODIFY _NIC VPORT CONTEXT Output Structure Layout 312
MODIFY NIC VPORT CONTEXT Output Structure Field Descriptions 312
Vport Counters LiStttt e e e e e 312
QUERY_VPORT COUNTER Input Structure Layout 313
QUERY_VPORT COUNTER Input Structure Field Descriptions 313
QUERY_VPORT COUNTER Output Structure Layout 313
QUERY_VPORT COUNTER Output Structure Field Descriptions 314
TRAFFIC COUNTER Format Layout00t 315
TRAFFIC_COUNTER Field Descriptionscouuiiiiinenen.... 315
NOP Command Input Structure Layout 316
NOP Command Input Structure Field Descriptions 316
NOP Command Output Structure Layout, 316
NOP Command Output Structure Field Descriptions 316

Mellanox Technologies

21

J

List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:

System Interface i 27
WQs, CQs, EQs and Interrupts Relations 32
Networking Transport ObJectsttt e e e 35
Sniffer Flow in ETH Port e e e 46
Address Translation Stagesitirititee i 54
MEKey Structuret 54
Address Translation State Machine i .. 55
Address Translation Flow Example 56
Address Translation Indirectionin WQE 57
Zero Based Region/Window it 58
HCA BAR SHUCHUIE . . . oottt e e e e e e e e 63
Work Queue Buffer Structure 70
Send Work Queue With 3 WQEs Posted 71
WQE Wrap-around in WQ Buffer 71
Receive Work Queue with 3 WQEs Posted 73
RO States e 91
SO SHateS . . .ottt 99
RMP Stateso 105
Completion Queue Buffer i 115
L 7055313 116
CQ Event Delivery State Machine 125
CQ RESIZE . . oot 127
Event Queue Buffer 133
EQ State Machine i 141
Completion Event Moderationoiiiniiiii i 143
Interrupt Frequency Moderation i 144
Completion and Event QUeuesttt 156

Mellanox Technologies

22

J

Revision History

Revision 0.40 (June 2016)

¢ First Release

Mellanox Technologies 23 J

About this Manual

This Programmer’s Reference Manual (PRM) describes the interface used by developers to
develop Mellanox Adapters based solutions and to write a driver for Mellanox adapter devices.
Specifically, it is intended for programming the devices corresponding to the PCI Device IDs

listed in Table 1.

Table 1 - PCI Device ID

PCI Device ID PCI Device ID PCI Device ID
Ouim: | G- || Do
Function Function Mode
ConnectX-4 4115 4116 521
ConnectX-4 Lx 4117 4118 523

Intended Audience

This manual is intended for software developers writing adapter device drivers.

The manual assumes familiarity with the Ethernet architecture specification.

Related Documentation

Table 2 - Reference Documents

Flash Programming for Mellanox Devices Applica-
tion Note
Document No. 2205AN

This application note describes how to manage firmware
programming to a Flash memory device attached to a
Mellanox Technologies adapter device

PCI Express® Base Specification

Industry Standard PCI Express 3.0 specification

Documentation Conventions

Text and Figures

The document uses figures extensively to improve readability of the document. All figures are
used for illustration purposes only and are not intended to replace written definitions. In case of
conflict (mismatch) between figures and the text, the text definition and statements hold.

Terminology

The terms device, Host Channel Adapter device, HCA device, NIC, NIC device and adapter
device are used interchangeably throughout this document to mean any of Mellanox’s adapter

devices.

Also, in the tables of this manual, if a field is said to be set without indicating a level of 0 or 1, it
means that it holds the value 1. Similarly, if the field is said to be clear or reset, it means that it

holds the value 0.

Mellanox Technologies 24

Byte Endianness

This manual uses Big Endian ordering of bytes. For fields greater than one byte in size, the most

significant byte resides at offset 0 in memory. In the tables of this manual:
* Bits 31-24 reside in memory at byte offset 0

e Bits 23-16 reside in memory at byte offset 1

* Bits 15-8 reside in memory at byte offset 2

» Bits 7-0 reside in memory at byte offset 3

PCI configuration headers are in Little Endian per the PCI specification.

Typographic Conventions
This manual uses the following typographic conventions:

* Command interface commands are capitalized, as in QUERY _HCA CAP fields are
denoted in bold italic font, as in opcode_modifier, or | _key

» Segments are denoted by italic font, as in the Datagram and Bind segments

* Ungqualified logarithm base: Many instances of the mathematical function “log” appear
throughout this document without qualifying the logarithm base--the reader should
assume base 2 for all unless specified otherwise

» Table fields that are marked ‘reserved’ or left blank must be set to zero by write opera-
tions, and ignored by SW read operations

Mellanox Technologies

25

J

Part 1: Mellanox Adapters Operational
Description

K 26 Mellanox Technologies

1 Introduction

This Programmer’s Reference Manual (PRM) describes the interface used by developers to

develop Mellanox Adapters based solutions and to write a driver for the supported adapter
devices.

1.1 Major Features Summary

Table 3 - Summary of Features Per Device Adapter

Feature ConnectX-4 ConnectX-4 Lx
Ethernet Support and Maximum Speed 100Gb/s 50Gb/s
Network ports lor2 lor2
PCle x16 Gen3 x8 Gen3
Ethernet stateless offloads: TCP/UDP checksum, HDS, Supported Supported
LSO, RSS
Ethernet stateless offloads: LRO Supported Supported
Ethernet stateless offloads: Flow Steering Supported Supported

1.2 Hardware Interfaces

A high level illustration of the device is shown in Figure 1.

Figure 1: System Interface

Network ports
Flash NC-SI (DMTF-CompIiant
Interface Management Link)
12C- — Device
Compatible <> JTAG
GPIO —=-—>
PCI Express

The device supports the following interfaces:

Mellanox Technologies 27

J

1.2.1

* Host Interfaces:
* PCI Express — See Section 1.2.1.1, “PCI Express,” on page 28
* NC-SI (DMTF-Compliant Management Link) — See Section 1.2.1.2, “NC-SI (DMTF-Compli-
ant Management Link),” on page 28
« T’C-Compatible — See Section 1.2.1.3, “I2C-Compatible,” on page 28
* Network Interface — See Section 1.2.2, “Network Interface,” on page 29
* Flash Interface — This interface enables the HCA to perform the following:
* Boot from a non-volatile memory (Flash) residing on this interface
* Access the VPD data located on an NVMEM (Flash)
e Access the expansion ROM for host boot over the network

* GPIO —the device can drive or read these pins. These pins can be used for various func-
tions such as controlling LEDs on adapter cards, or as interrupt inputs to the HCA
which can respond by issuing an event on the host interface. See relevant Adapters
Datasheets for details.

» JTAG - IEEE-compatible JTAG access port

Host Interface - PCI Express

A PCI Express 3.0 (Gen3) interface is used as the primary host interface for controlling the
adapter (HCA) device. For example, this interface is used for boot configuration and for posting
WR. During operation, the HCA moves data between the host interface and the network inter-
face. The HCA uses the host interface to access control structures (for example, context tables),
report completions, etc. Consumer application controls HCA operation through the host interface
(for example, by ringing DoorBells).

1.2.1.1 PCI Express

The PCI Express interface is fully compatible with PCI-Express 3.0 specifications, implementing
16 lanes (x16) and delivering host memory access bandwidth of 16GBytes/sec in each direction.
Various HCA products support lower number of lanes and lower signaling rate.

The software and management part of the PCI interface is discussed in Chapter 4, “PCI Interface”
on page 47.

1.2.1.2 NC-SI| (DMTF-Compliant Management Link)

NC-SI interface is a DMTF-compliant interface used to connect the device to an external Base-
board Management Controller (BMC). The device supports NC-SI version 2.0. Please contact
Mellanox Technologies for more details.

1.2.1.3 I>)C-Compatible

The 12C—compatible interface is designed to enable out-of-band access to the device, chassis man-
agement (IBML/SMBUS), and is used for HW debug. This interface is also designed to enable
Mellanox debug tools to access the device, even in the event of other interfaces being down. The
adapter device can be either a master or a slave on this interface (slave address is 0x48), and can

support two different IZC-compatible interfaces for redundancy/fault tolerance.

Mellanox Technologies 28

1.2.2 Network Interface

The network interface is comprised of 4 or 8 high-speed SERDES lanes running at up to 25Gb/s
each. Utilizing these SERDES lanes, the HCA provides one or two 4X network ports. Each net-
work port can use one, two or four lanes. Single-lane port configuration can use any lane. Multi-
lane port configuration is supported on top of pairs (2X) or quads (4X) of SERDES Ilanes.
Depending on the number of port lanes and lane speed configuration, each network port can run
at 10, 25, 40, 50, 56 or 100Gb/s.

Mellanox Technologies 29 J

2.1

2.2

2.3

Operational Overview

This chapter provides an overview of the device operation, describing the data structures and
control mechanisms of the device in general.

The device operation is described in the following sections:
* Section 2.1, “Software Interface,” on page 30

e Section 2.2, “HCA Configuration,” on page 30

* Section 2.3, “HCA Operation,” on page 30

Software Interface

The device can be accessed by system and application software in the following ways:

1. Through the PCI configuration interface. This access type is used during the PCI Express fab-
ric enumeration to configure the device.

2. Through the HCA Configuration Registers that are accessed through memory BARO (see
Chapter 4, “PCI Interface” on page 47). The software initializes the device and configures
basic device capabilities at boot using this interface.

3. Through user-level access to the HCA hardware (kernel bypass), using the User Access
Region (UAR), as described in Section 7.2, “User Access Region (UAR),” on page 63.

HCA Configuration

At initialization, the device is configured through an HCA command queue (see Section 7.14.1,
“HCA Command Queue,” on page 145) and HCA registers. At this stage, the device capabilities
(amount of resources to be supported), port capabilities and HCA resources are configured.

The HCA registers (UAR/DoorBells and initialization segment) are mapped to physical memory
space. The mapping is provided through a standard PCI BAR/LIMIT mechanism. For more
details, please refer to “PCI Interface” on page 47.

The command interface is used for general HCA device configuration. For more details, please
refer to Section 7.14, “Command Interface,” on page 145.

HCA Operation

After the HCA is initialized and opened, the host software supports send and receive data trans-
fers through Work Requests (WRs) posted to Work Queues (WQs). Each WQ contains a Send
Work Queue (SQ) for posted send requests, and a Receive Work Queue (RQ) for posted receive
requests (see Chapter 7, “Software Interface” on page 62). The WR is posted as a Work Queue
Entry (WQE) to an SQ/RQ. These WQEs can either cause data to be transmitted or received.
WQE:s are essentially descriptors that control the source and destination of data movement.

WQE:s that transmit data from the HCA local memory can include a “gather” list. This “gather”
list points to a set of memory buffers from which to assemble the outgoing message or contain
immediate data to be sent. The RQ also has a “scatter” list included in posted WQEs to indicate
memory buffers to be used for placing the received send payloads.

Data transfer is initiated by posting a descriptor to an SQ and ringing the respective DoorBell.
Once the DoorBell has been rung on an SQ, the HCA initiates execution of the send descriptor,

Mellanox Technologies 30

2.31

2.3.2

2.3.3

reading the descriptor and executing it according to the descriptor’s opcode - data transfer, mem-
ory registration and so on.

After a descriptor is executed and the message is completed, the HCA will post an entry to the
corresponding Completion Queue (CQ). Multiple WQs can report their completions to the same
CQ; the CQ number to report the completions is specified for each WQ at its initialization. The
HCA stores a WQE identifier in the CQ.

Work Queues

Mainstream operations (send/receive data, bind and so on) are posted to WQs by the application
SW. The Work Queue is accessible directly by the application program to post Work Requests to
the HCA. Each Work Queue Element (WQE) represents a single Work Request. The Work
Requests posted to WQs are executed by the HCA in the order that they are posted. Work
Request is posted to the HCA by writing a list of one or more WQESs to the WQ and ringing the
DoorBell which notifies the HCA that the request has been posted. For more details, please refer
to Section 7.4, “Work Queues,” on page 69.

Completion Queues and Completion Events

The HCA supports up to 16M CQs and enables reporting the completion of send or receive
requests to different CQs. Multiple WQs can report their completions to the same CQ, maintain-
ing many-to-one relations between WQs and CQs.

Events (and possibly a subsequent interrupt) can be registered for a CQ and are generated when a
Completion Queue Element (CQE) is placed on that queue.

For more details, please refer to Section 7.12, “Completion Queues,” on page 115.

Event Queues

Events generated by hardware are posted to Event Queues (EQs). The EQ is a memory-resident
circular buffer used by hardware to write event cause information for consumption by the host
software. HCA has multiple sources that can generate events (completion events, asynchronous
events/errors). Once an event is generated internally, it can be reported to the host software via
the Event Queue mechanism. When event reporting is enabled, event cause information is writ-
ten by hardware to the EQ when the event occurs. If EQ is armed (that is, at least one event has
been written to EQ), HW will subsequently generate an interrupt on the device interface (send an
MSI-X message or assert the pin) as configured in the EQ.

Each one of the HCA EQs can be associated with a different event handler on the host. The HCA
supports multiple EQs designed to enable de-multiplexing of events to different consumers on
the host. For example, completion reports can be reported to different EQs, based on the CQ that
reports the event. Each CQ can be configured to report its events to a particular EQ; multiple
CQs can report events to the same EQ. A completion event generated on the CQ may cause an
event to be generated on the EQ that a certain CQ is mapped to.

In a virtual environment, EQs can be exported to the guest Virtual Machine (VM), and the kernel
driver in the guest VM will control the EQ. HCA HW enforces protection and isolation between

EQs.

For more details, please refer to Section 7.13, “Events and Interrupts,” on page 133.

Mellanox Technologies 31

-

2.3.3.

1

Interrupts

The HCA supports multiple means of generating interrupts - asserting a pin on its physical inter-
face, emulating interrupt pin assertion on the host link (PCI) or generating Message Signaled
Interrupts (MSI/MSI-X), enabling software to de-multiplex interrupts to different host consum-
ers.

Each EQ can be configured to generate an interrupt when an EQE is posted to that EQ. Multiple
EQs can be mapped to the same interrupt vector (MSI-X) maintaining many-to-one relations
between EQs and interrupts.

The relations between WQs, CQs, EQs and different interrupt messages (MSIX vectors) is
shown in Figure 2.

Figure 2: WQs, CQs, EQs and Interrupts Relations

MSI-Xi MSI-Xi MSI-Xj MSI-Xk MSI-Xn MSI-Xq

’;;‘ AEV| [AEV[|wQ| (waQ| |wQ| [wQ| |waQ| |wQ| [waQ| (wQ| (waQ| |wQ| (wQ| |wQ| |(wQ| |wa| (wQ| (waQ

234

EQ

EQ EQ EQ EQ EQ EQ EQ EQ

Asynchronous events - like link state change or various errors - can also cause an event to be
posted and an interrupt to be asserted. Each asynchronous event type can be mapped to a specific
EQ and optionally generate an interrupt. Hardware does not prevent mapping synchronous and
asynchronous events to the same EQ. The user should use common sense while configuring a
device and use distinct EQs for asynchronous events.

HCA Memory Resources

Memory structures controlling HCA operation reside in the host memory allocated for the HCA
by the host software. This memory - called Interconnect Context Memory (ICM) - is allocated by
SW upon HCA request (in page-size chunks) and passed to HCA ownership. From that point on,
SW should not access this memory until it is explicitly passed back to SW ownership by the
HCA. Once given to the HCA, the HCA manages and uses this memory at its own discretion. For
details see “Interconnect Context Memory” on page 52.

Mellanox Technologies 32

wQ

The amount of ICM memory used depends on the amount of HCA resources that will be used as
in the following:

e Address Translation Tables - control structures in ICM memory allocated by the HCA for
every memory key

* HCA Control Objects (Contexts) - control HCA operation and are managed by the HCA in its
ICM

e User Access Region - a memory region that can be mapped directly to an un-trusted applica-
tion by the OS and can be addressed by non-privileged code

For more details, please refer to “Memory Resources and Utilization” on page 52.

Mellanox Technologies 33 J

3.1

3.1.1

Networking and Stateless Offloads

This chapter covers the networking services provided by the device. Networking services include
mechanisms for sending Ethernet frames over Ethernet media.

Networking Transport Objects

Overview

The adapter device uses the following transport objects (detailed in Chapter 7, “Software Inter-
face” on page 62) for processing ingress/egress traffic:

L]

Flow Table - See Section 7.11

Transport Interface Send (TIS) - See Section 7.6
Transport Interface Receive (TIR) - See Section 7.5
Send Queue (SQ) - See Section 7.9

Receive Queue (RQ) - See Section 7.7

Receive Memory Pool (RMP) - See Section 7.10
Completion Queue (CQ) - See Section 7.12

Event Queue (EQ) - See Section 7.13

Figure 3 summarizes the various objects and the relationships between them. An arrow denotes
an object pointing to n other objects whereas the n is specified on the edge of the arrow.

Note: SQ and RQ can point to the same or to a different CQ.

Mellanox Technologies 34

J

Figure 3: Networking Transport Objects

Receive Flow Shared Send Flow

As the diagram is shown for simplicity, it is imperative to explain the many to many relationships
that are beyond the diagram. For example - two TIRs may point to the same or different RQs and

Mellanox Technologies 35 J

3.2

3.21

two completely different RQs or SQs (from same or other TIS/TIRs) can point to the same CQ or
the same RMP.

Networking Services Usage

Ethernet

The basic Ethernet driver flow is summarized in the following bullets:

Driver load
Check device capabilities for Ethernet offload support through the command QUERY HCA_ CAP.

Establish transmit rings:

Allocate interrupts, create Event Queues and Completion Queues. Usually one interrupt, one Event
Queue and one Completion Queue are created per CPU core.

Create Transport Interface Send (TIS) objects. Usually one TIS is created per priority.
Create Send Queues (SQ) objects for sending packets and associate with TIS. Usually, Send Queues are

allocated per CPU, per priority. Note that this implies a many to one relationship between SQs and CQs.

Establish receive rings:

Allocate interrupts, create Event Queues and Completion Queues. Usually, one interrupt, one Event
Queue and one Completion Queue is created per CPU core.

Create Receive Queues (RQ) objects for receiving packets and associate with TIR (or RQT in case of
indirection usage, then TIR points to RQT which point to RQs). Usually, Receive Queues are allocated
per CPU.

Create Transport Interface Receive (TIR) objects. Associate TIR objects with the respective RQ objects.

Flow Table:

Configure the Flow Table to point to the relevant TIR objects.

Transmit Data Path:
Post send Work Request on the TX Work Queue buffer and ring doorbell.

Buffers can be released when CQE is reported.

Interrupt and event reporting can be controlled through the CQ and the EQ.
Receive Data Path:

Post receive Work Request on the RX Work Queue buffer and ring doorbell.

Reported CQEs indicate incoming packets including stateless offload indications.

Interrupt and event reporting can be controlled through the CQ and the EQ.

Driver tear-down:

Remove Flow Table entries.

Destroy receive rings:

Destroy RQs, RQTs and TIRs.
Destroy the associated CQs, EQs and interrupts.

Destroy transmit rings:

Destroy TIS objects and SQs.
Destroy the associated CQs, EQs and interrupts.

Mellanox Technologies 36

J

3.3

3.3.1

Stateless Offloads

The device supports multiple Stateless Offloads for Ethernet. The Stateless Offloads listed in this
section refer to offloads for device drivers running on bare metal device. Stateless Offloads
include the following capabilities:

* Checksum Offload

» Large Send Oftloads

* Receive Side Scaling

* Transmit Side Scaling

* Interrupt Moderation

* Large Receive Offloads

* VLAN insertion and stripping

» Flow Steering at layers 2, 3 and 4
* Packet padding (TX)

Start of Packet Padding (RX) and End of Packet Padding (RX) adapter stateless oftloads are sup-
ported for the following scenarios:

* IPv4 and IPv6 packets
* Layer 2: Ethernet

Checksum Offload

The device supports calculation of checksum on transmitted packets and validation of received
packets checksum. The adapter device offloads IPv4 checksum (L3) and TCP/UDP checksum
(L4). Checksum calculation is supported for TCP/UDP running over [Pv4 and IPv6.

Checksum offload support is reported through the csum_cap bit. See Section 12.3.3.2, “Net-
working Offload Capabilities,” on page 202.

Transmit checksum offload is supported through WQE checksum bits as described in
Section 7.4.4.1, “Send WQE Format,” on page 75. Note that for TCP/UDP, the device does not
require any pseudo header checksum calculation, and the value placed in TCP/UDP checksum is
ignored by the device when performing the calculation.

Note that UDP/TCP transmit checksum calculation is not supported for IPv6 packets with rout-
ing extension header and for IPv4 packets with LSRR and SSRR IPv4 options.

Receive checksum offload is reported through CQE checksum bits as described in
Section 7.12.1.1, “CQE Format,” on page 118. The relevant CQE checksum bits are:

* I4 ok, I3 ok - indicate whether checksum calculation of the packet was okay

* Checksum - this field holds 1's complement 16-bit sum of the part of the packet and is sum-
marized in Table 4. It helps software to calculate checksum on the packet in exceptional cases
without the need to checksum all the packet payload by only calculating incrementally.

Mellanox Technologies 37

J

3.3.2

3.3.3

Table 4 summarizes the Checksum field behavior in the CQE.

Table 4 - CQE Checksum Behavior

CQE Indication

L3_hd Tunmelin LRO Checksum Field Comment

_Zyp g Performed
Ipv4/ | no no Calculated IP header and IP Payload IP packet (IP only, TCP/UDP
Ipv6 Checksum.)
Ipv4/ | no yes Checksum of the merged TCP seg- TCP LRO message
Ipv6 ment payload.
None | no no invalid Unrecognized packet, non IP

Large Send Offload (LSO)

The adapter device supports Large Send Offload on transmitted TCP packets over IPv4 and IPv6.
Large Send Offload enables the software to prepare a large TCP message for sending with a
header template which is updated automatically for every generated segment. The device seg-
ments the large TCP message into multiple TCP segments. Per each such segment, device
updates the header template accordingly, and then transmits these segments into the wire. At the
end, a single completion (CQE) can be reported. The device’s LSO is compatible with NDIS
LSOv2 specification.

Large Send offload support is reported through the QUERY HCA command through the max -
so_cap field.

Large Send Offload is supported through WQE Large Send Offload opcode (see
Section 7.4.4.1.1, “Ctrl Segment,” on page 75).

Receive Side Scaling (RSS)

The adapter device supports Receive Side Scaling (RSS) capability. RSS spreads incoming traf-
fic across multiple rings which can be further redirected to different CPU cores to better spread
incoming loads. The adapter’s RSS is compatible with the NDIS RSS specification.

RSS is implemented through two mechanisms: Flow Table and TIRs. Flow Table rules classify
packets and deliver a specific traffic classes (e.g. TCP/UDP, IP only) to dedicated TIRs. TIRs of
type Indirect are responsible for spreading the traffic which they receive from Flow Table and
which belongs to specific traffic classes. Default RSS RQ can be supported by opening a dedi-
cated TIR of the type Direct associated with a default RQ and configuring Flow Table to deliver
to that “default” TIR all the traffic classes which should be delivered to the default RQ instead of
being spread.

This allows supporting different RSS spreading modes for different traffic classes. For example,
Flow Table rules can deliver all TCP IPv4 packets to TIR which spreads using <Source IP, Desti-
nation IP, Source TCP Port, Destination TCP port>, deliver TCP IPv6 packets to TIR which
spreads using <Source [P, Destination IP> and deliver UDP packets to the “default” TIR.

For more details, please refer to Section 7.11, “Flow Table,” on page 108.
The actual support for RSS is reported through the HCA CAP.rss_ind tbl cap.

Mellanox Technologies 38

-

3.3.31

3.34

3.3.5

3.3.6

3.3.6.1

TIR Spreading Traffic Mechanism

TIR context, with dispatcher type Indirect, selects a destination RQ based on selected packet
fields. The TIR uses a configurable hash function and calculates a hash value based on the
selected packet fields. TIR context selects a packet field according to rx_hash_fields selec-
tor_outer and rx_hash_fields selector_inner ficlds that set which field must take part in RQ
selection. Note that only packets which include the fields chosen by TIR’s rx_hash_fields selec-
tor_outer/rx_hash_fields selector_inner must be delivered to this specified TIR. For example,
if TCP destination/source port are selected, only packets with TCP destination/source ports
(UDP/TCP) should be delivered to that TIR. This can be achieved via proper Flow table rule con-
figuration, which will ensure, for example, that only TCP/UDP packets are delivered to the TIR
which uses TCP ports for RQ selection. The calculated hash value points to an indirection table
(implemented with RQs Tables). The indirection table entries point to RQs for further handling
of incoming packets. The RX hash value, selected fields and packet types are reported to the
CQE. For more details related to TIR object, refer to Table 45, “TIR Context Fields,” on page 86.

Transmit Side Scaling

Transmit side scaling enables simultaneous transmission of packets on multiple descriptor rings
from multiple CPU cores. To achieve this, more than one SQ should be created. Multiple SQs can
be attached to the same TIS.

Interrupt Moderation

Interrupt moderation can be achieved by controlling the EQ generation by CQs. This mechanism
is explained in detail in Section 7.13.14, “Completion Event Moderation,” on page 143.

Large Receive Offload (LRO)

LRO Introduction and Device Capabilities

The device supports Large Receive Offload (LRO) for TCP streams. The implementation is fully
compatible with NDIS Receive Segment Coalescing (RSC).

LRO capabilities can be queried through the QUERY HCA CAP command and is reflected
through the following bits (see Section 12.3.3, “QUERY_HCA_CAP — Query Device Capabilities,” on
page 194):

* Iro_cap - indicates LRO support

* Iro _psh flag, Iro_time_stamp - indicate LRO support for segments with PSH flag and
with the TCP timestamp option

* Iro_min_mss_size - the minimal size of TCP segment required for coalescing
* Iro_timer_supported_periods array - lists the supported LRO timer periods

LRO can be configured per TIR when the TIR is created through the CREATE TIR command.
The LRO parameters can be dynamically updated on a TIR using the MODIFY_TIR command,
which can also turn on and turn off the LRO.

When a TIR that is enabled for LRO is destroyed (DESTROY TIR), the device first completes
all outstanding LRO sessions on that TIR and generates completions (CQEs). Only then does the
DESTROY_TIR command complete. Similarly, when modifying a TIR (MODIFY_TIR) to dis-
able LRO, the device first completes all outstanding LRO sessions on the TIR.

Mellanox Technologies 39

3.3.6.2

3.3.6.3

When enabled for LRO, the TIR extracts LRO Flow IDs for incoming packets. LRO Flow ID is
based on connection 6 tuple: VLAN ID, Source IP, Destination IP, Source TCP Port, Destination
TCP Port and TCP transport. Packets that use the same LRO Flow ID are candidates for LRO
coalescing.

LRO Session Creation

LRO coalescing is performed using LRO sessions. Sessions can be created and terminated
dynamically by the device. While a session is open, segments using the same LRO Flow ID can
be coalesced within the session.

A session is created when all the following conditions are met:

LRO is enabled when creating TIR context by setting lro_enable_mask and other Iro
parameters

TCP Packet

No LLC/SNAP

The HW has available resources for a new LRO session

Packet validation is OK, e.g. packet is not malformed, TCP/IP checksum is OK, etc.
TCP flags are clear: SYN, URG, RST, FIN, NS and Reserved flags

When HCA_CAP.Iro_psh_flag is disabled, PSH flag should also be clear

No TCP options other than timestamp

When HCA CAP.Iro_time_stamp is disabled, TCP timestamp option must not appear
No IPv4 options or IPv6 extension headers

The packet is not an [P fragment

Segment TCP payload size is >= HCA_CAP.Iro_min_mss_size

* Note: Iro_min_mss_size > 0 and therefore pure ACKs are never merged

LRO Flow ID does not have an open LRO session

LRO Session Termination

An LRO session is terminated when one of the below conditions is met:

L]

L]

LRO timer expiration
Not enough space in receive WQE
TIR destruction or update (e.g. LRO disable)

Incoming packets that belong to the LRO session and meet any of the conditions which
are described below:

* Invalid TCP/IP checksum

* One of the flags is enabled: SYN, URG, RST, FIN, NS and reserved TCP flags

» PSH flag is enabled and HCA_CAP.Iro_psh_flag=0

* The packet contains TCP options other than timestamp

* When HCA CAP.Iro_time stamp is disabled and TCP timestamp option appears
» The packet contains IPv4 options or IPv6 extension headers

* Segment TCP payload size is < HCA_CAP.Iro_min_mss_size

* Out of order segment (TCP sequence number doesn't match the expected sequence number)

Mellanox Technologies

40

J

3.3.6.4

* Coalescing the currently arrived segment will exceed TIR's maximum IP length(*)

* Segment contains a timestamp option, HCA CAP.Iro_time stamp == 1, and one of the following
conditions is met(*):

* The previous segment does not contain the timestamp option
* Timestamp Value of the new segments < Timestamp Value of the LRO session

» The segment does not contain a timestamp option but the previous segments contain a timestamp
option (*)

* The segment contains a different value for the ECN flags (ECE and CWR) in the TCP header. The
segment contains a different value for the ECN field (ECT, CE) in the IP header comparing to the
previous segment (*)

» IP field of the incoming packet does not match the IP fields of the previous packets besides the fol-
lowing fields: TTL/Hop Limit, IPv4.Checksum, IPv4.Total Length and IPv4.Identification/
[Pv6.Payload Length

* The packet is an IP fragment.

When the session is terminated, a completion is generated accordingly to reflect the data that was
already coalesced on the LRO session. When session termination happens as a result of segment
arrival, this segment is not included as part of the “already coalesced data.” After the completion
generation, the new segment can be a candidate for a new session or generate an immediate com-
pletion. If the session was terminated as a result of timestamp mismatch or ECN mismatch (last
four cases of incoming packet, marked with asterisk (*) in the above list), then the new segment
can be a candidate for creation of a new session (see Section 3.3.6.2, “LRO Session Creation,” on
page 40). Otherwise, the new segment generates a regular completion as a standalone incoming
packet.

Merging New Segments Into Existing LRO Session

When a new segment arrives with an LRO Flow ID of an existing LRO session, then the segment
is a candidate for coalescing into an LRO session. The merge takes place if all the below condi-
tions are met:

* All conditions mentioned in Section 3.3.6.2, “LRO Session Creation,” on page 40
+ If the segment contains a timestamp option and:
+ the previous segment contained a timestamp option
* the incoming segment timestamp value is >= the timestamp previous segment timestamp

» If the incoming segment does not contain a timestamp option and the previous segment
did not contain a timestamp option

* Matching on all IP fields, except: TTL/Hop Limit, IPv4.Checksum, [Pv4. Total Length
and [Pv4.Identification/IPv6.Payload Length

* Matching on ECN flags (ECE and CWR) in the TCP header
* Matching on TCP Sequence Number
* Coalescing the new segment will not exhaust TIR Iro_max_ip payload_size

* Please note that the RQ WQE should be large enough to contain the merged segments, otherwise
the LRO session is flushed and completion with error is generated.

Mellanox Technologies 41

J

-

3.3.6.5

3.3.6.6

LRO Packet Scatter to Memory

LRO session is scattered into memory according to the relevant RQ/RMP pointed to by the TIR.
The first segment in the LRO session is scattered as is to memory according to the RQ configura-
tion. For example, when VLAN stripping is configured, then the VLAN is stripped prior to scat-
tering the first segment into memory. CQE is not reported. Subsequent segments that are merged
into an opened LRO session continue to utilize that WQE. Therefore that WQE has to be large
enough to contain the Iro max_ip payload_size (as configured in the TIR) and in addition the IP
headers and the L2 header.

Subsequent segments that are added to the LRO WQE are adding only the TCP payload, thus
creating a big TCP packet (one header with coalesced TCP payload) that comprises all coalesced
segments. The segments do not update the TCP header of the first segment (the one that created
the LRO session). The relevant TCP fields, e.g. latest TCP Window Size, are reflected in the
CQE that is generated when the LRO session is terminated.

It is the software responsibility to fix the original TCP and IP headers based on the CQE values.
To do this, software can check the Iro num_seg in the CQE and if non-zero, then TCP fields
should be updated.

Note that additional information for debug, tuning and statistics is reported to the LRO CQE, e.g.
the reason for the LRO session termination.

LRO CQE Fields Summary

This section summarizes LRO related CQE fields and their usage. SW needs some of these fields
in order to update the TCP/IP headers to correctly reflect the arrived data and connection state
(for example TCP Window size or IPv4 TTL field). These fields should be carefully updated
according to the requirements and needs of the relevant SW framework.

Table 5 summarizes the LRO fields in CQEs.

Table 5 - LRO CQE Fields Summary

Field Name Field Value Description
Iro_tcp_psh One of the packets in the session had | If set, SW must enable the PSH flag in the header
a TCP PUSH flag set. of the merged TCP segment.
Valid only for LRO packets (Iro_num_seg field not
clear).
lIro_abrt Abort coalescing reason. Can be used in order to collect LRO statistic.

Valid only for LRO packets (Iro_num_seg field not
clear).

Iro_dup ack cnt

Number of duplicate acknowledg-
ment that were encountered while
creating the coalesced segment.

In some environments driver must report this num-
ber as OOB info to TCP/IP stack.

Valid only for LRO packets (Iro_num_seg field not
clear).

This field should be always zero.

coalesced segment.

Iro_min_ttl The minimum HopLimit / Time- SW must update the IPv4 Time to live or IPv6 Hop
ToLive of all packets in this merged | limit fields according this field.
segment. Valid only for LRO packets (Iro_num_seg field not
clear).
Iro_tcp_win TCP window of the last packet inthe | SW must insert this value into the TCP header of

the merged packet.

Mellanox Technologies 42

J

Table 5 - LRO CQE Fields Summary

Field Name

Field Value

Description

Iro_ack seq num

LRO acknowledgment sequence
number (last packet in session).

SW must insert this value into the TCP header of
the merged packet.

Should be ignored if 14_hdr_type !=3 or 4.

Valid only for LRO packets (Iro_num_seg field not
clear).

Checksum

The checksum field for coalesced
TCP segments.

For LRO (Iro_num_seg field not clear), this field
covers TCP header + TCP payload of all merged
packets (without TCP pseudo header).

If SW wants/needs to calculate and fix checksum of
merged TCP header and payload it can use this
field. This field helps software calculate checksum
on the merged packet without the need to checksum
all the packet payload by only calculating incre-
mentally.

Please note that the final checksum should be cal-
culated after TCP header is fixed.

Please note that this field is not useful for IPv4
Checksum calculation.

Also please note that before recalculating and fix-
ing IPv4 Checksum IPv4 header must be first fixed
so it will reflect the correctly the merged segment.

Iro num_seg

Number of coalesced segments of
LRO.

0 - when LRO was not performed.

1 - when HW aggregated just a single packet.
Greater than 1 - when HW aggregated more than a
single packet.

byte cnt

Byte count of data transferred.

For LRO messages (Iro_num_seg field not clear):
the total length of messages is specified.

For example, for ETH packets the byte count starts
from the MAC header.

This field should be used in order to fix the [Pv4.
Total length or IPv6 Payload length fields.

Iro_timestamp_is_valid

Indicates that CQE’s timestamp field
holds LRO timestamp instead of reg-
ular timestamp CQE field.

When this bit is set Iro_timestamp_value/time-
stamp_h and Iro_timestamp_echo/timestamp_1
holds LRO timestamp values.

Iro_timestamp_value/time-
stamp_h

This field holds the Timestamp
Value (TSval) field of the header of
the last coalesced segment.

This field holds the Timestamp Value (TSval) field
of the header of the last coalesced segment only if
Iro_timestamp_is_valid bit is on.

If this field is valid (as LRO timestamp), SW can
choose to update the TS Value (TSval) field of TCP
header. Please note that this is not always required/
needed. Please refer to documentation of your SW
framework for more details.

Iro_timestamp_echo/time-

stamp 1

This field holds the Timestamp Echo
Reply (TSecr) field of the header of
the last coalesced segment.

This field holds the Timestamp Echo Reply (7:Secr)
of the header of the last coalesced segment only if:
Iro_timestamp_is_valid && (L4 hdr_type ==3 ||
L4 hdr _type ==4).

If this field is valid (as LRO timestamp), SW can
update TS Echo Reply (TSecr) field of the TCP
header.

Mellanox Technologies 43

J

3.3.7

3.3.8

3.3.9

Table 5 - LRO CQE Fields Summary

Field Name

Field Value

Description

L4 hdr type

L4 Header type

In some cases for LRO messages (Iro_num_seg >
0), inside CQE, the <ACK> bit is enabled but
inside the header the bit is disabled. This happens
when in the header of the first segment, the <ACK>
bit, was off but in one of the next merged segments
this bit was on. So for LRO packet when L4 hdr -
type == 4 or 3, SW must verify that the <ACK> bit
inside the TCP header of the merged segment is
enabled, before delivering the segment to the TCP/
IP module.

In addition this bit allows checking if Iro_ack se-

q_num and Iro_timestamp_echo field are valid.

VLAN Insertion/Stripping
The device offloads VLAN insertion and stripping for raw Ethernet frames.

VLAN insertion is performed by the driver, inlining the VLAN tag into the Ethernet frame head-
ers in the WQE Eth Segment (see Section 7.4.4.1.2, “Eth Segment and Padding Segment,” on
page 77).

VLAN Stripping is configured in RQ through the VLAN Stripping Disable (vsd) bit. When con-
figured to perform VLAN Stripping, the device removes the VLAN tag from the incoming
frames and reports it in the CQE fields.

For tunneled packets, both the outer and the inner VLANSs can be manipulated through VLAN
insertion offload, by inlining both outer and inner frame headers, but only the outer VLAN can
be stripped by VLAN stripping offload.

The support for VLAN insertion and stripping is reported through the QUERY HCA CAP
vian_cap field.

Packet Padding (TX)

Ethernet packets shorter than 64 bytes are automatically padded by the device on transmission to
64 bytes by appending trailing zeros (before the FCS). Additionally, the last segment of an LSO
packet, if shorter than 64B, is also automatically padded to 64B.

For encapsulated frames over Ethernet, the outer Ethernet packets are automatically padded by
the device to 64 bytes. Inner frames are left untouched.

Start of Packet Padding (RX)
Note - This feature is supported only when HCA CAP.start pad==I.

Some root complex are able to optimize their performance when incoming data size is multiple
full cache lines. The device can pad the beginning of incoming packets to full cache line such
that the last upstream write generated by the incoming packet will be a full cache line.

Start of packet padding can be enabled by setting start_padding field in Data Segment of Receive
WQE to 1. See Section 7.4.4.1.5, “Receive Data Segments,” on page 8§3.

Mellanox Technologies 44

-

3.3.10 End of Packet Padding (RX)

3.4

3.5

Note - This feature is supported only when HCA CAP.end pad==1.

Some root complex are able to optimize their performance when incoming data is multiple full
cache lines. The device can pad the ending of incoming packets to full cache line such that the
last upstream write generated by the incoming packet, will be a full cache line. When padding
incoming packets, the device will never go beyond the WQE scatter entry length.

To configure RQ to pad incoming packets, the end padding mode field should be configured in
the RQ Context.

The end of packet padding byte count is not reported to the CQE generated. In other words, the
byte_cnt field in the CQE reports the incoming message as received bytes and excludes the pad-
ding.

Cache line size, by default, is 64 bytes and can be configured to 128 bytes using HCA -
CAP.cache line 128byte in case it is supported.

Self-Loopback Control Using Transport Domains

Multiple consumers that coexist on the same NIC port can communicate via a local loopback
mechanism. A consumer might want to send packets to other local consumers via loopback but
block self-loopbacked packets. For this purpose, the device provides Transport Domain support
which allows a consumer to define which set of TIS/TIRs belongs to it and control if local loop-
backed packets generated by its TISs and delivered to its TIRs should be accepted or blocked.
The Transport Domain support is indicated by HCA CAP.log max_transport domain (see
Table 144, “HCA Capabilities Layout,” on page 196).

Transport Domains are allocated and released using DE/ALLOC TRANSPORT DOMAIN
commands.

TIRs and TISs are associated with Transport Domain via TIR/TIS.transport domain_id field and
TIR. self 1b_en controls self-loopback behavior of the TIR.

Sniffer

The device deploys a sniffer mechanism, enabling the duplication of the packets to designated
NIC root Flow Tables: one root Flow Table of type “NIC Sniffer RX” sniffs NIC’s incoming
packets and one root Flow Table of type “NIC Sniffer TX” sniffs NIC’s sent packets. Sniffer root
Flow Tables allow to create additional Flow Table chaining hierarchy, independent from the
“main” NIC Flow Table configuration. This allows the Sniffer SW to manage its own Flow Table
rules which are not dependent on the “original” Flow Table settings. In a sense, the sniffer is a
silent “observer”; all packets are still delivered to their “original” destination when the sniffer
function is enabled.

Sniffer Flow Tables must be handled as any other NIC Flow Table. Sniffer Flow Tables are man-
aged via CREATE/DESTORY FLOW _ TABLE commands. See Section 12.14, “Flow Table
Commands,” on page 276.

If root Sniffer Flow Tables are not configured, HW does not perform packet replication for sniff-
ing purpose.
Note: Enabling sniffer Flow Tables may have an adverse effect on the performance of the NIC.

Mellanox Technologies 45

Note: Loopbacked-by-NIC packets are delivered both to NIC TX Sniffer Flow Table and to NIC
RX Sniffer Flow Table; i.e, when both RX and TX Sniffer Flow Tables are enabled, two copies of
the loopbacked packet are captured by the Sniffer.

Figure 4: Sniffer Flow in ETH Port

EITTE
Junwopu)

papaau
Jiyaeqdoo) |

514 XH JagIus JIN
H

514 X1 Jajius JIN

Suissanioug Japjius

Hod JIN

DY
-
‘ 14
. Q"_-|

Jes A
.a- ¥
/&
{5}, 1
el
duioding

3004
A SILEIL |
I
H13 M¥H
duissazonyg senday

Mellanox Technologies 46 J

4.1

4.2

PCI Interface

The device accesses the host processor through a 16x PCI Express 3.0 bus, capable of consum-
ing/driving data at a rate of 16Gbyte/sec full-duplex.

The device is capable of presenting up to 16 physical functions and 256 virtual functions. Each
physical and virtual function exposes PCI type0 configuration header.

Each function (be it physical or virtual) exposes a single BAR called HCA BAR - a prefetcheable
BAR used to post control data path commands. Both the initialization segment and the UAR
pages are implemented on this BAR. This is Bar(in the PCI header.

Format of the initialization segment is shown in “Initialization Segment” on page 48. Format of
the UAR pages is shown in “User Access Region (UAR)” on page 63.

PCle Compliance
The device is PCI Express 3.0 compliant. It supports the following features of the PCI Express
3.0:
* Optimized Buffer Flush/Fill (OBFF)
» Latency Tolerance Reporting (LTR)
* Re-sizable BARs
* L1 Active State Power Management (ASPM)
e ASPM Optionality
* Advanced Error Reporting
* Alternative Routing-ID Interpretation (ARI)
» ID-Based Ordering (IDO)
* Extended Tag
* TLP Processing Hints (TPH)
» Steering Tags are not supported
The device also supports:
* 8.0 GT/s Receiver Impedance
* Precision Time Measurement (PTM)
* Readiness Notifications (RN)
The following features are supported in memory region granularity:
* No-snoop
* Relaxed ordering
* TPH - TLP processing hints

Capabilities Reporting

PCI Express® Base Specification defines a set of capabilities which should be reported when
made available by the device. These capabilities are reported through a special structure of
linked-list items. The first capability is pointed in offset 0x34 in the configuration space, and the
last capability is indicated by setting its “next capability” pointer to 0x00.

Mellanox Technologies 47

4.3

The capabilities are defined in Appendix H of the PCI Express® Base Specification. PCle addi-
tional capabilities (added on top of PCI) are described in Section 7.5 of the same specification.

The capabilities reported by the device are listed in Table 6.

Table 6 - PCI Capabilities Summary

Name

ID Value

Description

Power

0x1

PCI Power Management Interface
Defined by PCI Power management interface specifi-
cation.

VPD

0x3

Vital Product Data (VPD)
Defined in section 6.4 in Appendix I of PCI Local
base specification, Revision 3.0

PCI Express

0x10

PCI Express
Defined in section 7.8 of PCI Express Base Specifica-
tion, Revision 3.0

MSI-X

0x11

MSI extension support
Defined in section 6.8 of PCI Local base specifica-
tion, Revision 3.0

MSI

0x5

Message Signaled Interrupts (MSI)
Defined in section 6.8 of PCI Local base specifica-
tion, Revision 3.0

Initialization Segment

The initialization segment is located at offset 0 of HCA BAR. The device uses this segment in the
initialization flow (as described in Chapter 11, “Initialization and Teardown” on page 365), and
to perform command doorbell as further described in Chapter 12, “Command Reference” on

page 185.

Table 7 - Initialization Segment

31130(29(28|27|26|25|24|23(22(21(20/19|18|17|16|15[14(13|12|11|10|9 | 8 | 7 3121 0%
&
fw_rev_minor fw_rev_major §
cmd _interface rev fw_rev_subminor §
S
(o]
=
(=3
Q
=
cmdq_phy addr[63:32] §_
cmdq phy addr[31:12] nic i|log cmdq -| log cmd-
nter- size q_stride |&
face
command DoorBell vector o:g
a
7
3

Mellanox Technologies 48

Table 7 - Initialization Segment

25

nic_in-

terface -
supporte
d

SUrZIfenT

internal timer h

internal timer 1

Y8001 | U001 [HOOOT | UDdd-UrtC 40T T | UDET-U00T

JuL 1830
udD00T

health_syndrome health counter

U800+-U0 10T [4D00T |US00T-UFTOT [UOTOT

Table 8 - Initialization Segment Field Descriptions

0000h | 31:16 | fw_rev_minor Firmware Revision - Minor RO

15:0 | fw_rev_major Firmware Revision - Major RO

Mellanox Technologies 49

J

Table 8 - Initialization Segment Field Descriptions

Offset Bits Name Description Access
0004h | 31:16 | cmd_interface rev Command Interface Interpreter Revision ID RO
This number is bumped up every time a non-back-
ward-compatible change is done for the command
interface.
15:0 | fw_rev_subminor Firmware Sub-minor version (Patch level) RO
0010h | 31:0 | cmdq - Physical address of the command queue record. RW
phy addr[63:32] This field should not be modified after INIT HCA
until TEARDOWN HCA.
0014h | 31:12 | cmdq - Physical address of the command queue record. RW
phy addr[31:12] This field should not be modified after INIT HCA
until TEARDOWN HCA.
9:8 nic_interface NIC interface mode WO
0x0: full driver
0x1: disabled
7:4 log_cmdq_size Log number of cmdgs available RO
3:0 log_cmdq_stride Stride between start of each cmdq RO
0018h | 31:0 | command DoorBell Bit per command in the cmdq. When the bit is set, | WO
vector when writing this vector to the device, the com-
mand is moved to HW ownership (HW need to
execute the command). bit 0 is related to the com-
mand in offset 0 in the command queue etc.
The valid bits in this vector are [number of com-
mands-1..0]
When driver is in No DRAM NIC mode, this field
must not be written.
01FC 31 initializing 1 - device still in initializing state. RO
0 - device is ready to receive commands.
26:24 | nic_interface sup- Bitmask indicating which nic_interface modes are | RO
ported supported
0: full_driver
1: disabled
1000h 31:0 | internal timer h MSBs of the current internal timer value. See Sec- | RO
tion 7.12.10, “CQE Timestamping,” on page 132
1004h 31:0 | internal timer I LSBs of the current internal timer value.See Sec- RO
tion 7.12.10, “CQE Timestamping,” on page 132.
100Ch 0 clear_int Writing 1 to this register will clear the interrupt WO
(will always use intA)
Mellanox Technologies 50

J

44

441

Table 8 - Initialization Segment Field Descriptions

Offset Bits Name Description Access
1010h | 31:24 | health syndrome Syndrome RO

0x1: FW_INTERNAL ERR - assert triggered in

FW code

0x7: DEAD_IRISC - Irisc not responding

0x8: HW_FATAL ERR

0x9: FW_CRC_ERR

0xA: ICM_FETCH_PCI_ERR

0xB: ICM_PAGE_ERR

0xC: ASYNCHRONOUS_EQ BUF_OVERRUN
0xD: EQ IN_ERR

0xE: EQ_INV

O0xF: FFSER_ERR

0x10: HIGH TEMP_ERR

Data Interface

PCle Attributes

The device supports flexible configuration of PCle cycle attributes. The PCle cycles’ attributes
are configured for each Memory Key Context at its creation (see “MKey Context” on page 58).
Those attributes are passed to the PCle interface unit and to the PCle packets. Note that for indi-
rect address translation where multiple context accesses are involved during the address transla-
tion process, the attributes passed to the PCle interface unit are bitwise OR of all attributes of
MKCs involved in address translation.

Mellanox Technologies 51

J

5.1

5.2

5.2.1

5.3

Memory Resources and Utilization

To control its operation, the HCA uses various data structures (contexts) residing in system mem-
ory. The HCA requests memory pages from software and then uses those pages to manage these
data structures.

The amount of memory to be used depends on the capabilities that the HCA is required to sup-
port. For example, the number of concurrently open RQs/SQs determines the amount of memory
that is requested by the HCA for RQ/SQ related contexts.

Memory allocation can be done in chunks of system pages. However, for performance reasons it
is desirable to allocate a physically contiguous chunk of host memory for the Interconnect Con-
text Memory (ICM).

Interconnect Context Memory

ICM is host memory that is allocated for the exclusive use of the HCA. The HCA uses the ICM
to maintain and manage its control objects.The ICM is allocated upon HCA request at initializa-
tion (see “Initialization” on page 365). When the HCA needs system memory, it requests mem-
ory allocation from software and the latter should then allocate memory pages and pass them to
HCA ownership. Software should not access these HCA owned pages until the HCA returns their
ownership to SW.

The HCA asks software to allocate or release memory pages by posting events. SW should
respond to these events using the MANAGE PAGES command, see Section 12.3.2, “MAN-
AGE PAGES - Driver Delivers Memory Pages for the Device Usage or Returns Pages,” on
page 191 for details. Moreover, the HCA manages an independent ICM for each PCI function,
enabling to shut down individual PCI functions without impacting others.

Memory Resources

To control its operation, the HCA uses various data structures, residing in host memory. To help
the system developer correctly configure the system memory resources, this section presents an
overview of the device’s data structures, and the memory resources required for HCA operation.

Address Translation Tables

Address translation tables are control structures in ICM allocated by the HCA for every memory
key. These tables are used to translate virtual addresses to physical ones. They are programmed
by software through the HCA command interface as well as by lightweight memory registration
operations and are subsequently maintained by the HCA hardware.

For more details about address translation and protection please refer to “Address Translation
and Protection” on page 54.

HCA Control Objects (Contexts)

The HCA operation is controlled by “context objects” that are managed by the HCA in its ICM.
For more details about control objects, please refer to Chapter 7, “Software Interface” on
page 62.

Mellanox Technologies 52

5.4

User Access Region

The HCA provides a memory region that can be mapped directly to an un-trusted application by
the OS and can be addressed by non-privileged code. This region is used to allow unprivileged
applications to access needed HCA resources, such as ringing DoorBells, from userspace. Each
process should get a distinct page mapped to this region to access HCA for data path operation,
thereby isolating HCA access between the processes.

For more details about User Access Region format and usage please refer to Section 7.2, “User
Access Region (UAR),” on page 63.

Mellanox Technologies 53

J

-

6

6.1

Address Translation and Protection

Each memory request generated by the HCA undergoes address translation and protection checks
as illustrated in Figure 5.

Figure 5: Address Translation Stages

Physical adr
A
MTT pointer Physical adr
Mkey Context
MTT

Mkey.index | Key | Virtual Address

The device translates the given virtual address to a physical address using the given memory key
as an address space identifier. Memory protection checks are done in this stage.

Virtual to Physical Address Translation and Protection Checks

Each memory request specifies a virtual address space identifier (Memory Key or MKey) and a
virtual address within this address space. An MKey is a 32-bit address space identifier consisting
of two fields - index and key. The Index field identifies the MKey. The key field can be altered by
the application program for various reasons such as a generation identifier when an MKey is
reused. The logical structure of an MKey is shown in Figure 6.

Figure 6: MKey Structure
31 87 0
Index | Key |

Address translation performs the bulk of the work. A memory region context is retrieved using
the MKey given in the memory operation. Internally, MKeys are managed in the Memory Protec-
tion Table (MPT).

Once a memory region context is located, the memory operation is validated against the parame-
ters in the memory region context:

1. Boundary check — The virtual address and length of access are validated against the region/
window boundaries.

2. Operation check — Operation (read/write) and location (local/remote) are validated against the
memory region/window rights.

If all the previous validations passed, then the virtual address is translated into a physical address.

The memory region’s base address is subtracted from the Virtual Address (VA) given in the oper-
ation, giving an offset into the memory region. With this offset, one of the memory translation

Mellanox Technologies 54

table entries (MTT) associated with the memory key context can be selected. The type of mem-
ory region will determine what the MTT points to and hence how to pick the right one. There are
2 different types of memory regions:

Direct mode: Each MTT entry translates a naturally-aligned page. The page size is spec-
ified in the MKey context; HW supports page sizes from 512 bytes to 2 gigabytes. The
page size must be a power of two. In this mode, a physical address may now be calcu-
lated. The offset from the previous step is divided by the size of each MTT entry, giving
the correct MTT entry. The remainder of this division is added to the physical address
indicated in the MTT entry giving the physical address. If necessary, spanning multiple
MTT entries is done automatically using the same process.

Indirect mode: Each KLM entry specifies another memory key, an address within the
address space specified by this memory key and the length in bytes of the segment rep-
resented by this KLM entry. The KLM entries for the memory region are “walked” until
the correct entry for the given offset is found. The remainder of the offset is added to the
address in the KLM entry and the entire process is repeated. HW protects itself from the
possibility of infinite recursion. Note that memory protection checks must pass on ALL
indirect MKeys as well as the direct MKey, or the operation will fail. For executing
memory operation, the appropriate access-right (for example, local write) should be in
all related MKeys. Indirect memory regions allow the combination of multiple sparse
memory buffers to a single virtually-contiguous memory buffer that can be used for I/O
operation. See “Address Translation Indirection” on page 56 for details.

The state machine flow of address translation is shown in Figure 7.

Figure 7: Address Translation State Machine

Read Mkey
context(s)
specified by
buffers’ list

. (o)
b\‘e 54 //7@
\‘\@\l\e\‘ E:,_ g %‘9@
o
-
o =
¢S
Read Mkey 20
Translation context Direct x Q Translated
request specified by MKey § S Read MTT Address
WQE/RDMA 3
Q

Error handling

Mellanox Technologies

—»>

55

J

6.1.1

Address Translation Indirection

The device has extended memory management functionality that enables specifying an arbitrary
list of memory buffers (scatter/gather list) as a virtual address space. The memory translation
table (MTT) entries associated with a given memory key can be a list of buffer pointers in a
structure similar to the scatter/gather list used in WQEs. When used this way, the MKey is called
an indirect MKey. The size and alignment of each individual buffer (MTT entry) are not con-
strained. When an indirect MKey is used, the address given in the memory reference specifies an
address within the virtual address space defined by the list of memory buffers (MTT entries) of
the MKey. In turn, the given address identifies an individual pointer(s) to be used for the next
step in the address translation process. The next step in address translation uses the memkey and
virtual address of the pointer identified in the first step. See Section 6.1, “Virtual to Physical
Address Translation and Protection Checks,” on page 54 for a detailed description of address
translation calculation. A simple case of one-step indirect address translation flow is illustrated in
Figure 8.

Figure 8: Address Translation Flow Example

Memory
MTT based on list of
virtual pointers \
\ Virtual buffer
1 \\\ Defined by MKey
Memory reference Len1 \ -
(WQE or wire) MKey1 i -
Mkey Adr1 \\\ I I
Len context Len2 “\ |
Mkey — MKey?2 2 AN -l
Adr Adr2 -
Len3 AN
MKey3 AN
Adr3 , - ———
//
2 I
—_—— i —
3 /
//

The original memory reference {mkey, len, adr} accesses an indirect memkey, as specified in the
MKey context. This MKey’s MTT entries contain a list of buffers forming a memory region spec-
ified by MKey. The adr operand of the original memory reference is used to calculate an offset
from the beginning of this region. HW scans the pointers identifying which one should be used to
start the memory access specified by the original reference. In the example in Figure 8, the sec-
ond pointer is identified as the one to be used as the first byte address to be used. Subsequently,
the /en field of the original memory reference is used to figure out which pointers will be used to
complete the memory request. In this example the memory access starts at the middle of the buf-
fer specified by the second pointer and carries over into the third one.

A single Work Request (WQE) can mix membkeys of different types. Figure 9 illustrates an exam-
ple of a WQE using both direct and indirect address translations for different scatter/gather
entries.

Mellanox Technologies 56

6.2

Figure 9: Address Translation Indirection in WQE

VKey XNITTS
WQE
| drect /y
MTT address
Mey X Corted Wikey | iTTS
Control segment | drect
MIT address —
Byte count Mkey i Context B’W
Mey X — Y [T
Adcress[63:37 ' Address[310]
Address[31:0] MIT address Byte court
Byte count key Y Context Meey|
Mkey Y Address[63:37]
Address[63:37] [direct Address[31:0]
Address[31:0] MIT address
Byte count Vkey Z Context
Vkey Z
= — [drect MKey Z TS
AL Ikey j Context
MiKey | MTTs
IVkey contexts
Translation tables (MTT)

The indirection capability enables a host to specify a scatter/gather list of unconstrained size and
length memory buffers as the target of RDMA operations using a very fast lightweight memory
registration process. Nesting of indirect translations is limited to the number of iterations that is
globally configured in the device. If the number of translation indirections exceeds the config-
ured limit, the address translation operation terminates with an error.

Indirect MKeys are programmed via the UMR Work Request, for details please see “User-Mode
Memory Registration (UMR)” on page 158.

Zero-Based Virtual Address Regions and Windows

Zero-based virtual address regions are regions that start with virtual address zero. This property
of the region is specified in the MKey context. Memory Windows cannot be bound onto zero-
based regions.

The start of a zero-based memory region does not need to be aligned with the first page of the
region (see Figure 10). The offset (in bytes) of the region’s first address is specified in the MKey
context.

Figure 10 illustrates an example of a zero-based memory region of 8Kbyte starting at offset of
0.5Kbyte from the beginning of first aligned page.

Mellanox Technologies 57

6.3

6.4

6.4.1

Figure 10: Zero Based Region/Window

[72KB Offset t -

4KB
Address 0x0 of Page
Region/Window

8KB Region/Window A

4KB
Address Ox 1FFF of Page
Region/Window

4KB

Page

Reserved LKey

The HCA supports the use of a reserved LKey. When accessing memory using the reserved
LKey, one-to-one mapping between virtual and physical addresses is done. The use of this key is
qualified by the rlky bit in the RQ/SQ contexts. The LKey is programmed by the Level 0 privi-
lege agent (for example VMM) at device initialization. The value of the reserved LKey is
retrieved from the channel adapter by the QUERY SPECIAL CONTEXTS command executed
by a Level 1 privilege agent.

Address Translation Control Structures

MKey Context

The MKey context is configured by the host software executing CREATE MKEY command
(see “CREATE MKEY - Create MKey Entry” on page 228). Table 9, “MKey Context Format”
shows format of the MKey context argument of this command while operating in enhanced
mode.

Table 9 - MKey Context Format

31(30(29(28(27| 2 (25(24|23|22(21|20|19/18(17[16[15[14{13|12|11/10/9 (8 |7 |6|5|4|3 |2 %
6 2
= r | rr|lw]| Ir | acces
= z g
8 o | | X =
= mode
gpn mkey[7:0] §
o
(o)
5

Mellanox Technologies 58

J

Table 9 - MKey Context Format

31(30(29(28|27| 2 |25(24|23|22|21|20{19|18|17|16/15/14|13|12|11|{10|/9 |8 |7 |6 |5 |4 2|1 0%

6 Z
a
5 pd
E 3
£ =
=

start_addr
len

translations_octword_size

log_entity size

UDE | U8E | Ure |U0E | UDT | USC | Uy | U0CT |[UDT-81 | UP1-01

The fields of the MKey context is shown in Table 10.
Table 10 - MKey Context Fields

Offset Bits Name Description Access
00h 30 free 0 - memory key is in use. It can be used for address translation
1 - memory key is free. Cannot be used for address translation
15 umr_en Enable umr operation on this MKey
13 ™w If set, remote write is enabled
12 T If set, remote read is enabled
11 Iw If set, local write is enabled
10 Ir If set, local read is enabled. Must be set for all MKeys
9:8 access 0x0: PA - (VA=PA, no translation needed) if set, no virtual to physi-
mode cal address translation is performed for this MKey. Not valid for,
block mode MKey, replicated MTT MKey
0x1: MTT - (PA is needed)
0x2: KLMs - (Indirect access)
Mellanox Technologies 59

Table 10 - MKey Context Fields

Offset Bits Name Description Access
04h 31:8 gpn must be Oxffftff.
7:0 mkey[7:0 | Variant part of MKey specified by this MKey context
]
0Ch 31 length64 | Enable registering 2+64 bytes per region
23:0 pd Protection domain
10h- 64 start_add | Start Address - Virtual address where this region/window starts
14h r
18h- 64 len Region length. Reserved when length64 bit is set (in which case the
1Ch region length is 2°64B).
34h 31:0 | transla- Size (in units of 16B) required for this MKey’s physical buffer list or
tions_oct | SGEs
word_- access_mode: MTT - each translation is 8B
size access_mode: KLM - each SGE is 16B
access_mode: PA - reserved
Must be a multiple of 4
38h 4:0 log_enti- | When access mode==MTT: log2 of Page size in bytes granularity.
ty size
otherwise: reserved.
Must be >=12

The following table describes the usage of umr bit in the MKC.

The MTT Entry contains the physical tag. An entry of the Memory Translation is shown in

Table 11.
Table 11 - Memory Translation Table (MTT) Entry Layout
31(30(29(28(27|26|25(24|23|22(21|20(19|18|17|16[15|14|13(12|11|10(9 |8 |7 |6 |5 |4 |3 |21 Om%
ptag[63:32] S
ptag[31:8] IR0
o |@ =
=J=]
Table 12 - Memory Translation Table (MTT) Entry
Offset Bits Name Description Access
00h 31:0 | ptag[63:32] High-order bits of physical tag. The size of the field depends on the
page size of the region.
04h 31:8 | ptag[31:8]
1 WI_en Write enable.
0 rd_en Read enable.
Mellanox Technologies 60

J

4 N

6.5 Memory Key Configuration (Creation)

Memory Key object is initialized (created) by the privileged SW entity using the CREATE M-
KEY command.

K Mellanox Technologies 61 J

71

711

7111

Software Interface

This chapter describes all the interfaces between the driver software and the device hardware,
including specific control flows of the device. It contains the following sections:

» Section 7.1, “ISSI - Interface Step Sequence ID,” on page 62
* Section 7.2, “User Access Region (UAR),” on page 63

e Section 7.3, “NIC_Vport Context - NIC Virtual Port Context,” on page 66
» Section 7.4, “Work Queues,” on page 69

» Section 7.5, “Transport Interface Receive (TIR),” on page 84
» Section 7.6, “Transport Interface Send (TIS),” on page 89

e Section 7.7, “Receive Queue (RQ),” on page 90

* Section 7.9, “Send Queue (SQ),” on page 99

* Section 7.10, “Receive Memory Pool (RMP),” on page 104

* Section 7.11, “Flow Table,” on page 107

» Section 7.12, “Completion Queues,” on page 114

» Section 7.13, “Events and Interrupts,” on page 132

» Section 7.14, “Command Interface,” on page 144

ISSI - Interface Step Sequence ID
ISSI of this PRM revision is 1.

This parameter defines the step sequence ID of the interface between SW and the device. It is
incremented by steps of 1.

ISSI is used to enable deprecating/modifying features, command interfaces as well as software,
maintaining compatibility within the same ISSI value.

SW implementing this revision of the PRM should remember the ISSI of the PRM. In addition,
during initialization flow (see Section 11.2, “HCA Driver Start-up,” on page 366), SW must per-
form a query of the supported ISSIs using QUERY ISSI command (see Section 12.3.10, “QUE-
RY _ISSI,” on page 216), and then set the actual_issi informing the device on which ISSI to run,
using SET_ISSI command (see Section 12.3.11, “SET ISSI,” on page 218).

It is clear that SW cannot run with an ISSI which is not supported by the device, so the actu-
al_issi which software should set for the device must be = min (sw issi, max supported issi).

Note that if QUERY ISSI command returns with BAD OPCODE, this indicates that the sup-
ported _issi is only 0, and there is no need to perform SET ISSI.

ISSI History

This section describes the overall interface changes each time ISSI incremented.

ISSI =1

* Added cqe_version to HCA CAP (see Table 144, “HCA Capabilities Layout,” on
page 196). SW must read this field to identify the cqe version.

Mellanox Technologies 62

J

7.2

7.21

User Access Region (UAR)

The isolated, protected and independent direct access to the HCA HW by multiple processes is
implemented via User Access Region (UAR) mechanism.

The UAR is part of PCI address space that is mapped for direct access to the HCA from the CPU.
UAR is comprised of multiple pages, each page containing registers that control the HCA opera-
tion. UAR mechanism is used to post execution or control requests to the HCA. It is used by the
HCA to enforce protection and isolation between different processes.

The cross-process isolation and protection is implemented through four key mechanisms:

1. Host SW maps different UAR pages to different consumers, hereby enforcing isolation
between different consumers to access the same page in the HCA control space.

2. Each Control Object can be accessed (controlled) through a UAR page.

3. HCA driver associates a UAR page with a control object while initializing (“opening”) the
object.

4. Prior to executing control operation on the object, HCA validates that the UAR page used to
post the command matches the one specified in the contexts of that object.

Operation is passed to the HCA by posting WQE to respective Work WQ, updating Doorbell
Record (where applicable) and writing to respective Doorbell Register in the UAR page associ-
ated with that Work WQ. Writing to Doorbell Register of the HCA is further referred to as ring-
ing DoorBell. The DoorBell register in the UAR is the first 2 DWORDS of the blue-flame buffer.

UAR Sections

The UAR is implemented as a single BAR register per each function that contains multiple
pages; page size should match the CPU (system) page size, and should be configured at device
initialization. Figure 11 illustrates the structure of the UAR BAR.

Figure 11: HCA BAR Structure

UAR
number

UAR DB page i

UAR DB page N-1 } Page

Mellanox Technologies 63

J

7.2.2

UAR Page Format

Table 13 shows the layout of UAR page.
Table 13 - UAR Page Format

311302928 |27(26(25(24(23|22(21|20|19|18|17|16(15(14[13|12|11{10|9 |8 |7 |6 |54 |3 |2 |1 O%yg.
(=3
S
5
o
=
d g ; 2
cmdsn a cq_ci 2 q
ﬁ O
cqn =
[\8}
(o]
=
[
Q
=
eqn (update CI and Arm) Consumer Index § -
~ RO
AN
=
eqn (update CI) Consumer Index °§
()
I
O
=
4
5]
@)
=
DB_BlueFlame Buffer0 even § w
S g
T |o
Q™
= 5
o |B
DB_BlueFlame Buffer0 odd =
o 7
Z B
=
DB _BlueFlame Bufferl even ;o>
- - @
2 &
ol
S~
o B
DB _BlueFlame Bufferl odd = ;"U
@ R
o =
O
=

Table 14 - CQ DoorBell Register Field Descriptions

Bits Name Description
2 cmdsn Command Sequence Number. This value should be ‘0 for the first DoorBell rung, and should be
increment on each first DoorBell rung after a completion event. That is, cmdsn = (num_of com-
pletion_event_delivered + 1)% 4.
1 cmd 0 - Request notification for next Solicited or Unsolicited completion event. ¢q_ci field should

specify the CQ Consumer Counter at the time of the DoorBell ring.
1 - Request notification for next Solicited completion event. c¢q_ci field should specify the CQ
Consumer Counter at the time of the DoorBell ring.

Mellanox Technologies 64

J

7.2.21

Table 14 - CQ DoorBell Register Field Descriptions

Bits Name Description
24 cqn CQ number accessed
24 cq ci Consumer Counter of last-polled completion

Send DoorBells are rung in blue flame registers by writing the first 8 bytes of the WQE (that con-
tains post counter, DS and SQ number) to offset 0 of the blue flame register (See Table 25, "Gen-
eral - Ctrl Segment Format"). This post counter points to the beginning of the WQE to be
executed. Note that this is different than the counter in the DB record which points to the next
empty WQEBB. Send DBs of a SQ can be rung on specific Blue Flame registers and cannot be
interleaved on multiple Blue Flame registers.

Completion WQ DoorBells are rung in CQ register by writing CQ number, command, command
sequence and CQ Consumer Index to respective fields. For best performance, this should be per-
formed as a single 64-bit write operation.

Event WQ DoorBells are rung on the EQ register by writing the EQ number and the EQ con-
sumer index. Writing to the first register will Arm the EQ. The second one will just update the
consumer index without arming. When the EQ is armed, next event posted to the EQ will gener-
ate HW interrupt associated with this Event WQ. For details, refer to Table 93, “Event Queue
Context Layout" on page 139

A recommended usage model, for getting interrupt whenever there is EQE in EQ is as follows:
When arming the EQ at the first time, Consumer-index should be 0. When SW depletes the EQ
from events, if it pop X events from the EQ, consumer-index should be incremental by X.

Blue Flame

BlueFlame is a low-latency mechanism that can be used to post latency-critical Send WQEs to
the device. When BlueFlame is used, WQEs get written directly to a PCI BAR of the device (in
addition to memory) so that the device may handle them without having to access memory, thus
shortening the execution latency. For best performance, it is recommended to use BlueFlame
when the HCA is lightly loaded. For high-bandwidth scenarios, it is recommended to use regular
posting (without BlueFlame).

BlueFlame properties can be retrieved by querying the HCA CAP. The BlueFlame is described
through the following fields: bf, log bf reg size, log_max_bf regs per page and log_max_b-
f pages.

The BlueFlame section contains equally-sized BlueFlame registers. Each such register contains a
pair of equally-sized BlueFlame buffers. Each register (2 buffers) size is 2le-bfreesize hytes, The
layout of a BlueFlame page is shown in Table 13.

A BlueFlame buffer is used to post a Send Work Request. The WQE should be written directly to
one of the BlueFlame register buffers as explained in “Posting a Work Request to Work Queue”
on page 74. If WQE size is bigger than BlueFlame buffer size, then the WQE cannot be posted
using BlueFlame. The two buffers in the BlueFlame register must be used alternately; in other
words, BlueFlame_Bufferi_even should be used for each even posting to BlueFlame register i,
and BlueFlame Bufferi odd should be used for each odd posting to the same register. Blue
flame registers 2 and 3 are used for “fast path” posting.

When posted to a BlueFlame buffer, a WQE should be formatted as described in “Send WQE
Format” on page 75.

Mellanox Technologies 65

7.2.2.2

7.3

BlueFlame register buffer must be written in chunks of DWORDs (aligned on 4 bytes) or multi-
ple DWORD:s. It may, though it is not recommended, be written out-of-order with respect to the
offset of the posted writes. Different BlueFlame registers can be accessed by software simultane-
ously and independently. This way a single BlueFlame page can be used by multiple threads (per-
mitted to access the same page) without locking. However, if software wishes to write different
WQEs to the same BlueFlame register, it must use semaphores in order to avoid interleaving
between the WQEs.

Blue Flame register should be written using Write Combining, generating bursts of one (or more)
cache lines. If the WQE size is smaller than (a multiple of) a cache line, the WQE written to the
Blue Flame buffer should be padded up to the closest cache line boundary. The HW uses the
DS field of the WQE to determine the boundary of the WQE written to the Blue Flame buftfer.
Note that the WQE must be posted to the Work WQ without padding.

For regular (not BlueFlame) DoorBells, it is recommended not to use Write combining. The
Doorbell and the Blue Flame registers are on the same UAR page. Therefore, it is recommended
to map this UAR page twice. Once as write combining (for Blue Flame) and once as non Write
Combining for regular DoorBells. For WQEs with DS=1, blue flame is not supported. DS=1 is
the case for NOP or zero length send operations. The driver can either use regular posting (no
blue flame) for this case or it can pad the WQE with extra zero length data segment as explained
in “Send Data Segments” on page 81, thus extending DS to 2, which enables submission of blue
flame on the WQE.

Sharing UARs

SQ/RQ and CQ DoorBells require 64-bit writes. For best performance, it is recommended to exe-
cute the SQ/RQ/CQ DoorBell as a single 64-bit write operation. For platforms that do not sup-
port 64 bit writes, it is possible to issue the 64 bits DoorBells through two consecutive writes,
each write 32 bits, as described below:

* The order of writing each of the DWORD:s is from lower to upper addresses.

* No other DoorBell can be rung (or even start ringing) in the midst of an on-going write
of a DoorBell over a given UAR page.

The last rule implies that in a multi-threaded environment, the access to a UAR page (which can
be accessible by all threads in the process) must be synchronized (for example, using a sema-
phore) unless an atomic write of 64 bits in a single bus operation is guaranteed. Such a synchro-
nization is not required for when ringing DoorBells on different UAR pages.

NIC_Vport Context - NIC Virtual Port Context

For more details on NIC_Vport context see Section 3.1.2, “Vport Context,” on page 109.

Table 15 presents Vport context structure.
Table 15 - NIC_Vport Context Layout

3130|2928 (27(26(25/24(23|22|21|20(19(18[17|16|15|14|13|12/11|10({9 (8 |7 |6 |5 |4 |3 |2 %
&
min_wqe
inline - §
mode
(=)
E

Mellanox Technologies 66

J

Table 15 - NIC_Vport Context Layout

_/

on osrwoxd
owr oSIwoId

[1e osnuoid

allowed_li
st_type

allowed_list_size

o
7
<3
=)
e}
7
[\
S
5
[\)
N
&
N
S
7
W
Q
5
o
0
&
Y
Q
T
jes]
Q
=

4od

permanent_address
(See Table 19, “MAC Address Layout,” on page 69)

current_uc_mac_address[0]/current_ mc_mac_address[0]/vlan[0]

UDd | u8d-uvrd

current_uc_mac_address[1]/current mc_mac_address[1]/vlan[1]

“=4OZT [UO0T-UB0T |U0T-U00T

Table 16 - NIC_Vport Context Field Descriptions

00h

26:24

min_wqe_in-
line_mode

Sets the minimal allowed inline mode for NIC Vport SQs.

Each SQ has inline mode that defines the minimal required inline head-
ers in Eth Segment of the SQ’s WQE:s.

Note: SQ.min_wqe_inline_mode must be >=

Nic_vport.min_sq wqe_inline_mode.

For more details - See Section 7.4.4.1.2, “Eth Segment and Padding
Segment,” on page 76.

Valid only when HCA CAP.wqe_inline_mode ==

24h

15:0

MTU size required for Vport.
In query, 0 means MTU of Vport equal to external physical port.

Mellanox Technologies

67

Table 16 - NIC_Vport Context Field Descriptions

Offset Bits Name Description Access
FOh 31 promisc_uc When set, request to allow any unicast address on vlan list.
30 promisc_mc When set, request to allow any multicast address on vlan list.
29 promisc_all When set, request to allow all traffic.
26:24 | allowed list | Determine the allowed list type
type 0: current_uc_mac_address
1: current_mc_mac_address
2: vlan_list
11:0 allowed list | Size of the addresses list.
size The list type is defined by allowed list_type.
For allowed list type==current_uc_mac_address, allowed list size
must be <<=HCA_CAP.log_max_current_uc_list.
For allowed_list_type==current mc_mac_address, allowed_list size
must be <=<HCA_CAP.log max_current_mc_list
For allowed list type==current uc_mac_address, allowed_list size
must be <<HCA CAP.log max_vlan_list
F4h- 64 perma- Permanent address.
F&h nent_address | MAC address format. See Table 19, “MAC Address Layout,” on
(See page 69.
Table 19,
“MAC
Address Lay-
out,” on
page 69)
100h- 64 cur- List of the allowed addresses on a nic_vport.
rent- The size of the list is determined by allowed list_size, and the type of
_uc_mac_add | the list is determined by allowed list_type.
ress[...}/cur- For the format of uc_mac_address/mc_mac_address: See Table 19,
rent- “MAC Address Layout,” on page 69.
_mc_mac_ad | For the format of vlan, See Table 17, “Vlan Layout,” on page 68.
dress][...]/
vlan[...]
Table 17 - Vlan Layout
311302928 (27(26(25(24|23|22|21/20(19(18|17|16|15|14|13/12|11(10{9 |8 |7 |6 |5 | 4 2|1 0%
&
(=)
vlan =
(==}
S
=
Table 18 - Vlan Field Descriptions
Offset Bits Name Description Access
00h 11:0 vlan vlan
Mellanox Technologies 68

7.4

7.41

Table 19 - MAC Address Layout

31130(29(28(27|26|25|24|23|22|21({20(19|18|17|16|15|14|13[12(11|/10|/9 |8 |7 |6 |5 |4 |3 |2

mac_addr[47:32]

mac_addr[31:0]

U0 | 40O | 1°sHFO

Table 20 - MAC Address Field Descriptions

Offset Bits Name Description Access

00h 15:0 mac_addr[47: | Upper bits of mac address.
32]

04h 31:0 | mac_addr[31: | Lower bits of mac address.
0]

Work Queues

Work Request is posted to the HCA by writing a list of one or more Work Queue Elements
(WQE) to the WQ and ringing the DoorBell, notifying the HCA that request has been posted.

This section describes the structure and management of WQs and the WQE format.
HCA WQ is an object containing the following entities:

1. SQ/RQ Context - Contains control information required by the device to execute 1/O opera-
tions on that Context. These contexts are configured by SW at creation time.

2. Work Queue Buffer - A virtually-contiguous memory buffer allocated when creating the

SQ/RQ:

* Send Queue - A virtually-contiguous circular buffer accessible by user-level software and used to
post send requests. Maximum supported SQ size is retrieved by the QUERY HCA CAP command
(log_max_qp_s7), see Table 144, “HCA Capabilities Layout,” on page 196.

* Receive Queue - A virtually-contiguous circular buffer accessible by user-level software and used
to post receive requests. Maximum supported RQ size is retrieved by the QUERY HCA CAP
command (log_max_gp_sz), sece Table 144, “HCA Capabilities Layout,” on page 196.

3. DoorBell Record - A structure containing information of most recently-posted Work
Request.

Work Queues Structure and Access

The device WQ is a virtually-contiguous memory buffer used by SW to post I/O requests
(WQEs) for HCA execution. A WQ is comprised of WQE Basic Blocks (WQEBBs); WQE size
is modulo of WQEBB size.

Each WQ buffer contains the Send WQ and Receive WQ adjacently. The RQ resides in the
beginning of the buffer; Figure 12 illustrates the structure of Work Queue Buffer.

The buffer must be aligned on WQEBB/Stride (the larger of the two); RQ must be aligned to 64B
even if RQ stride is smaller than 64B. RQ can be of zero size. The offset of WQE in the first page
(page_offset) is delivered to the device while configuring the SQ/RQ.

Mellanox Technologies 69

7411

Figure 12: Work Queue Buffer Structure

SQ and RQ Shared Receive Queue
A
Page_offset[11:6] Page_offset[11:6]
A
3 N Receive Queue
[(V]
@ 5
g Qo o
2 % 8 Shared
g 3 Receive Queue
E X
() —
> o
2
Send Queue
\
\ 4

Send Queue

The size of Send WQ is specified in units of Work Queue Basic Blocks (WQEBBs). The size of a
WQEBB is 64 bytes. The size (or depth) of the SQ is a power-of-two number of WQEBBs, and
therefore the queue itself is a power-of-two size (in bytes). The maximum SQ size in WQEs can

be retrieved through the QUERY HCA_CAP command (2/08-"9%_4P_s%)

SQ is organized as a circular buffer containing Send WQEs. Each posted WQE can occupy one
or more basic blocks. This enables using large WQEs without wasting memory on huge WQs.

Note that the value of log _sq_size does not necessarily equal the number of WQEs that can be
posted to the SQ. Rather, it reflects the maximum number in case where the size of each posted
WQE is smaller than or equal to WQEBB. Thus, the number of WQEs that can be posted may
vary depending on the actual posted WQE sizes. The maximum WQE size can be retrieved by
QUERY_HCA_CAP command (and max_wqe_sz_sq). Figure 13 illustrates the Send WQ with
three WQEs of different sizes posted.

Mellanox Technologies 70

J

Figure 13: Send Work Queue With 3 WQEs Posted

Work Queue
Start address

[

A

-

19 WQE

2" WQE

Work Queue size

WQEBB WQEBB WQEBB WQEBB WQEBB WQEBB WQEBB

- - >a a4 r 4 4>

WQEBB

Work Queue
End address

\/

SQ WQEs are identified by sq wgebb_counter, which starts at zero and advances with each
WQE post by number of WQEBBs this WQE occupies and is stored in Send Doorbell Record.
sq_wqebb_counter wraps around OxFFFF.

WQE can wrap around the Send WQ if it starts close to the edge of the WQ and does not fit into
the space left. This phenomena is illustrated in Figure 14.

Figure 14: WQE Wrap-around in WQ Buffer

Work Queue -
Start address 2 A
g
=
3rd WQE _ %
end - g
m¢
m
e,
= N
’ il e
E = 3
L =
¢ S
g =<
= S
. ¢ =
g g
= 3
3 2
w
rd g
3YWQE s
start o @
<]
Work Queue o 2 J

End address

Mellanox Technologies 71

J

-

7.4.1.2 Receive Queue

RQ is organized as a circular buffer containing Receive WQEs. Receive WQEs are placed at
fixed stride in the Receive WQ buffer and are executed in the order of their appearance in the
buffer. The stride is specified in the WQ in a multiple of 16-byte chunks; the number of these
chunks must be a power of two. The maximum RQ size in strides can be retrieved through the

QUERY HCA_CAP command (2/°8-"%*_9P_?) Maximum WQE size supported is retrieved by
QUERY_HCA CAP command. Can be 512B or smaller.

Each 16-byte chunk of Receive WQE contains a single scatter pointer and byte count. If WQ
stride size is larger than the actual WQE, the scatter pointers list can be terminated with scatter
pointer specifying a zero value in the byte count field and L _Key = 0x00000100. This scatter
pointer is interpreted by HW as end of the scatter list and is referred thereafter as Null scatter
pointer.

Table 21 - Receive Queue - Scatter Entry Format

31(30(29|28(27|26(25(24|23(22|21|20(19|18|17|16|15(14|13|12|11|10{9 |8 |7 |6 |54 |3 |2|1 %
o
Byte Count §
L key § g
=y E
Local address[63:32] x |2
Local address[31:0] §
Table 22 - Receive Queue - Signature Entry Format
31130(|29|28|27|26|25(24(23(22|21|20|19|18|17|16|15[{14({13[12(11|{10(9 |8 |7 |6 |5|4 |3 |2 |1 %
&
(=3
(=}
=
. S |2
signature = i
2
5 |
(==}
Q
=
Table 23 - Receive Queue - Signature Entry Fields
Offset Bits Field Description
04h 31:25 signature WQE signature. The signature covers the entire WQE as well as the RQ number

segments.

and the WQE index corresponding to that WQE. Should result in Oxff. This feature
is enabled per WQ. The feature covers the whole WQE stride including the NULL

Figure 15 illustrates the Receive WQ with three WQESs posted.

Mellanox Technologies 72

J

7.4.2

Work Queue o
Start address

w

o

=

w

¢}

=

gi
Work Queue

End address

wQ

wQ

waQ

waQ

stride

stride

stride

stride

Work Queue size

A

\/

Figure 15: Receive Work Queue with 3 WQEs Posted

RQ WQEs are identified by the rq wqe_counter, which starts at 0 and advanced by 1 each time a
WQE is posted to the RQ and stored to Receive Doorbell Record. rq_wqe_counter wraps around
OxFFFF.

Doorbell Record

Doorbell records are located in physical memory. The address of DoorBell record is passed to the
HW at RQ/SQ creation. The receive and send DoorBell record are consecutive in memory. DB
records are aligned on a 4 byte boundary. The DoorBell record denotes the counter
(sq_wqebb_counter for SQ and wqe_counter for receive and shared RQs), which reflects the
number of WQEs posted to this queue since its creation. Specifically, it points to the first empty
WQEBB (SQ) or WQE stride (RQ). The counter wraps around at OxFFFF for all other queues.
Doorbell Record format is shown in Table 24.

Table 24 - Doorbell Record format

31(130(29|28|27|26|25(24(23(22(21(20(19|18|17|16{15|14|13|12|11|10|9 |8 |7 |6 |54 [3 |21 %
&

counter S é‘

<

a

counter g %

Doorbell record should be initiated to O at the creation.

Mellanox Technologies

73

743

7.4.3.1

7.4.3.2

WQE Ownership

Hardware reads and executes WQEs from WQs asynchronously to SW posting new WQEs; each
WQE is executed only once, and completion is optionally reported to the CQ associated with
WQ. The WQE can be executed by the HCA only if its ownership has been passed to HW.

The WQE ownership is passed to HW by updating the Doorbell Record, posting there respective
WQE counter (sq_wgebb_counter and rq_wqe_counter for send and receive DoorBell records
respectively).

Once WQE ownership has been passed to the HCA, HW can execute the WQE. Neither WQE
nor data buffers associated with this WQE can be modified by SW until WQE ownership has
been returned back to the SW. Altering WQE or associated data buffer can have lethal conse-

quences to that WQ. It is guaranteed, however, that operation of other queues will not be
affected.

After a WQE has been executed, its ownership is passed to SW by posting CQE to respective
CQ.

Posting a Work Request to Work Queue

In order to post Work Request to WQ, software should execute the following steps:

1. Write WQE to the WQE buffer sequentially to previously-posted WQE (on WQEBB granu-
larity).

2. Update Doorbell Record associated with that queue by writing their sq wqebb counter or
wqe_counter for send and RQ respectively

3. For send request ring DoorBell by writing to the Doorbell Register field in the UAR associ-
ated with that queue. For performance-critical send WQEs DoorBell can be rang by using the
BlueFlame mechanism (see “Blue Flame” on page 65).

For send requests the third step (DoorBell) guarantees that send WQE will be executed. How-
ever, HW may execute WQE after the second step has been completed. Ringing DoorBell for
WQE that has already been executed makes no harm - such a DoorBell is ignored by the HW.

Software can post a list of WQEs together by repeating step 1 for all WQEs, then updating the
DoorBell record (step 2) once and ringing one DoorBell (step 3). The DoorBell record wqeb-
b_counter should count all WQEs posted and the wge_index in the DoorBell should point to the
first wqebb of the last WQE posted.

For receive requests, updating DoorBell record passes receive WQE ownership to HW and
receive operation will be executed upon arrival of respective send packet.

Posting Work Request on Shared Receive Queue
While posting Work Request to the SRQ, software should take the following steps:

1. Locate a slot in WQ to be used for the WQE that will be posted after the current one being
posted and write its pointer to next/control segment of the newly-created WQE. Since next/
control segment of the WQE contains address of next WQE, the location of next WQE to be
posted is determined while posting a current WQE.

2. Write WQE (the scatter list, concluding with Null scatter pointer if required) to the slot
located in step (1) of previously-posted WQE.

3. Update Doorbell Record associated with that SRQ writing there rq_wqe_counter.

Mellanox Technologies 74

744

7.4.41

74411

The third step (DoorBell record update) passes receive WQE ownership to HW and receive oper-
ation will be executed upon arrival of respective send request.

Work Request (WQE) Formats

The maximum length of a Work Request (WQE) reported in HCA CAP.max _wqe sz rq and

max_wqe_sz_sq, and is specified in octowords (16-byte chunks). WQEs must be aligned on
WQEBB/Stride.

Send WQE Format

Send WQEs are built from the segments that are listed below. Segment size is a multiple of 16
bytes. Each WQE contains a subset of these segments, depending on the requested operation, as
shown in Table 41, “WQE Construction Summary”. For each transport service and operation,
segments must be in accordance with Table 41, “WQE Construction Summary” and with the
order shown in the list below:

* Ctrl Segment - The segment contains some control information for the current WQE.
This segment is described in Section 7.4.4.1.1, “Ctrl Segment,” on page 75.

» [Eth Segment - Contains packet headers and information for stateless L2, L3, L4 off-
loading. This segment is described in Section 9.3.4.1.5, “Eth Segment and Padding Seg-
ment,” on page 140.

* Memory Management Segment - Contains the parameters required for a Memory Man-
agement WQEs (UMR). This segment is described in Section 7.4.4.1.3, “User-mode
Memory Registration (UMR) WQE Format,” on page 78 and on.

* Data Segments - Contain pointers and a byte count for the scatter/gather list. They can
optionally contain data, which will save a memory read access for gather Work
Requests. The WQE can contain single or multiple memory pointer segments, single or
multiple in-line Data segments, or any combination of these.

Ctrl Segment

This segment contains control information of the WQE. The interpretation and validity of some
fields depends on the transport service deployed on the SQ processing the WQE.

Format of the general control segment is shown in Table 25.

Table 25 - General - Ctrl Segment Format

3p3(2(2(2(2y 2y 2212122ty |11} 98 71605 4{3/21|0|
11098 7|6|54|3|2|1]0[9]8]7[6|5[4,3|2|1]0]
(o]

WQE Index OPCODE =

=

SQ number DS 2

=

signature 2

=

umr_mkey S

=

Mellanox Technologies 75

J

Table 26 specifies fields in the control segment.

Table 26 - General Ctrl Segment Field

Offset | Bits Name Description

00h 31:24 reserved

23:8 WQE Index WQEBB number of the first block of this WQE. This number should
wrap at Oxffff, regardless of size of the WQ.
00h 7:0 OPCODE Opcode: OpCode of this WQE. Encodes the type of operation to be
executed:

0x00: NOP - WQE with this opcode creates a completion, but does
nothing else

0x0A: send
0x25: UMR
04h 31:8 SQ number SQ number this WQE is posted to.
5:0 DS WQE size in octowords (16-byte units). DS accounts for all the seg-

ments in the WQE as summarized in wqe construction

08h 31:24 signature WQE signature. The signature covers (XOR) entire WQE Should
result in Oxff. This feature is enabled per WQ.

See See Section 9.2.3, “Work Queues Elements Signature,” on
page 156.

7:5 FM Fence Mode

000 - No Fence

001 - Initiator Small Fence.

Wait as long as there are WQESs that are currently locally in execution
(doing gather / memop etc.)

3:2 CE Completion and Event mode

00 - Generate CQE only on WQE completion with error.

01 - Generate CQE only on first WQE completion with error (i.e if
CQE on previous WQE completed in error, no CQE will be generated)
10 - Generate CQE on WQE completion (good or bad)

11 - Generate CQE and EQE (local Solicited event).

1 SE Solicited Event
0Ch 31:0 i If the WQE opcode is UMR, then this field holds the UMR MKey
invalidation_key/ ({mkey_index[23:0], tag})
umr_mkey

7.4.4.1.2 Eth Segment and Padding Segment

This segment contains stateless offloading control and inlined Ethernet packet headers. This seg-
ment is used for Ethernet SQs. When the Eth header is used on Ethernet SQs, it is used as is.

The Eth segment contains the headers of the packets inlined within the segment. Headers that are
inlined should be excluded from the data segments that follow the Eth segment. The begging of
the inline header depends on the protocol offloaded as follows:

* For standard Ethernet - the packet inlined headers start from the Ethernet header.

Mellanox Technologies 76

The minimal required inline headers depend on HCA CAP.wqe inline mode. See Table 146,
“Per Protocol Networking Offload Capabilities Layout,” on page 202.

The format of the Eth segment is shown in Table 27.

Table 27 - Eth Segment Format

313
1

2
9

2|2
817

201 212]2]2]2
6| 5(43|2]|1

1O

398

400

o1
SO¢]

U0

480

inline_header_size inline headers

udo0

inline headers cont’d

qol

k]

Uyl

usl

UoT

Table 28 specifies fields in the Eth Segment.

Table 28 - Eth Segment Fields

Offset Bits Name Description
04h 31 l4cs When set - the device calculates checksum on the L4 header (TCP/
UDP) that follows the IP header. (In case of tunneling, it is the one
which follows the outer IP header)
For non TCP/UDP packets, the device ignores this bit.
When 14c¢s_inner is set must be disabled.
30 13cs When set - the device calculates checksum on the L3 header (IPv4). (In
case of tunneling, it is the checksum of the outer L3 header).
For non IPv4 packets, the device ignores this bit.
13:0 mss Maximum Segment Size - For LSO WQEs - the number of bytes in the
TCP payload to be transmitted in each packet
Must be 0 on non LSO WQEs.
08h 31:0 reserved
0Ch 25:16 | inline header size Length of the inlined packet headers.
15:0 inline_headers Inlined packet headers. See description in the above section.
10h 31:0 inline_headers cont’d The inline headers can span multiple octowords up to the maximal

WQE size. The last octoword of inline packet header can be partially
populated. The rest of the bits are reserved.

Mellanox Technologies 77

J

The format of the Padding segment is shown in Table 29:

Table 29 - Padding Segment Format

3320202021212 2]2{2]2) 11111 1) 1)|{1} 1|98 7|65 43|2|1]|0
11098 7|654|3|2|1{0{9]8]7[654,3|2|1]0

1O

UD0-400

Table 30 specifies fields in the Padding Segment:

Table 30 - Padding Segment Fields

Offset Bits Name Description

00h- 31:0 Reserved
0Ch

7.4.4.1.3 User-mode Memory Registration (UMR) WQE Format
Format of UMR WQE is shown in Table 31.

Table 31 - UMR Work Request Format

313 (2212022222221} {111y 1{1|1|9|8|7|6]5 4[3|2(1]|0
110{9|8|7[6|5[4]3|,2[1|0[9|8|7[6|5|4]3|2{1]|0

195]J0

D0-00

UMR control Segment

€01

MKeyCtx segment
(See Table 9, “MKey Context Format,” on page 58)

DL-0%

inline KLMs/MTTs(when translations_octword_size!=0 and inline=1)

(See Table 36, “UMR Memory Buffer (KLM) Description Argument Format,” on page 80)
(See Table 11, “Memory Translation Table (MTT) Entry Layout,” on page 60)
UMR Pointer to KLMs / MTTs(when inline=0)

(See Table 34, “UMR Pointer Description Argument Format,” on page 80)

Mellanox Technologies 78

Table 32 - UMR Control Segment Layout

3130|2928 (27/26(25(24{23|22|21|20(19(18|17|16|15|14|13|12/11|10{9 |8 |7 |6 |54 |3 |2 |1 0%
&

o

o

z

£ Q1B =
& ': ° =
g7

[¢]

=]

translation_octword actual size translation_offset &
MkeyCtx bit mask §
Io
Q
=
=
=
1
Q
=
UMR control segment fields descriptions are shown in Table 33.
Table 33 - UMR Control Segment Fields
Offset Bits Name Description
Oh 31 inline When set, KLMs/MTTs are inline in the UMR WQE, else there is a UMR
pointer to these structs
If no KLMs/MTTs, this bit should be set.
30:29 | Check free 00 - do not check
01 - If the status of the MKey is not free, the UMR operation will fail.
10 - If the status of the MKey is free, the UMR operation will fail.
11 - reserved
28 translation_offset en when set, translation_offset is valid (and not bsf octword_acual size)
4h 31:16 | translation_octword ac- Place for klm entries in 16B units (inline or pointers)
tual size KLM list should be aligned to 64B. SW can add PAD to the list of KLMs for
this.

15:0 translation_offset translation_offset in 16B units is used to write klms/mtts at some offset from
the start of the klm/mtt list describing the memory region. This enables
changing only some of the klms/mtts of a region. translation_offset and size
should be aligned to 64B

Mellanox Technologies 79

J

Table 33 - UMR Control Segment Fields

Offset | Bits Name Description

08h- 31:0 MkeyCtx bit mask mask bit for MkeyCtx bits. One bit per field
0Ch 0 - length[63:0], len64
1 - log_page_size

6 - start_addr

13 - mem_key[7:0]
17-1r

18 - lw

19 - 1r

20 - rw

29 - free

other bits are reserved

Table 34 - UMR Pointer Description Argument Format

3312022202222y 2|20 | L)L 1p1{98] 7|65 4]321]|0|
110{9|8|7[6]|5[4]3|2[1]|0 7 50143 1 =3
(o]
S
=
mkey £
addressH[63:32] &
addressL[31:0] g
=
Table 35 - UMR Control Segment Fields
Offset Bits Name Description
04h 31:0 mkey
08h 31:0 addressH[63:32]
0Ch 31:0 addressL[31:0]
Note that the address of the UMR pointer must be aligned to 2KB.
Memory buffer description is shown in Table 36.
Table 36 - UMR Memory Buffer (KLM) Description Argument Format
P32 222022 2(2) 2|2 L)Ly rpp 9871605432 1]|0|g
110{ 9| 8[7[6|5[4]3|2]1|0[{9|8|7]6|S5|4]|3|2]1 =
(o]
byte count 2
mkey &
addressH[63:32] &

Mellanox Technologies 80 J

Table 36 - UMR Memory Buffer (KLM) Description Argument Format

313(2]2)2(2]22]2]2 201111y)11 11198 7|6|5]|43 1] 0o
110{9|8|7[6]|5[4]3|2[1]|0 71615]4|3]2|1 =3
(o]
addressL[31:0] S
=
Table 37 - UMR Memory Buffer (KLM) Fields Description
Offset Bits Name Description
00h 31:0 byte count Byte Count. Must be up to 2GB.
04h 31:0 mkey
08h 31:0 addressH[63:32]
0Ch 31:0 addressL[31:0]
7.4.4.1.4 Send Data Segments
Send Data segments compose gather lists. There are two types of data segments: memory point-
ers and inline data. They are distinguished by the value of bit 31 at offset 0, as shown in the fol-
lowing tables. The gather list length is calculated according to DS (in the Ctr/ segment) of the
descriptor.
The format of the data segment that uses memory pointers for data is shown in Table 38, “Data
Segment Format - Memory Pointer”.
Table 38 - Data Segment Format - Memory Pointer
31({30(29|28(27(26|25(24|23(22(21|20|19|18|17|16|15|14|13|12|11({10{ 9|8 |7 |6 |5|4 |3 1 %
o
Byte Count[30:0] =4
L key RZ
e
Local address[63:32] g |8
Local address[31:0] I
Memory pointer segments always use 16 bytes. Multiple memory pointer segments can be pres-
ent in the WQE. However, UMR or atomic WQEs only support a single memory pointer in their
gather list. A byte count value of zero means 2Gbyte data transfer. To send a request with zero
data, DS should be set such that no data segments appear in the WQE.
Table 39, “Data Segment Format - Inline Data” shows the format of data segments containing
data.
Table 39 - Data Segment Format - Inline Data
31130(29(28(27(26|25(24|23|22(21|20({19|18|17|16|15(14|13|12{11|{10(9 |8 |7 |6|5|4 |3 1 ;%
&
1 byte count [9:0] =
Data & padding §

Mellanox Technologies

81

J

Every data segment containing data occupies one or more octowords (16-byte chunks). The
amount of data to be transferred is specified by the byte count field, and the length of a data seg-
ment depends on the value of this field. The last octoword should be padded if the byte count
does not cover all of its 16 bytes. byte _count should not exceed the WQE length beyond that
specified in the DS field of the WQE. If byte count field is zero, no data will be added to the
message. SW which plan to work with a simple model where all WQEs are with fixed size, can
set inline segments with zero byte count to extend send WQE.

Data is filled in using Big Endian order (the first byte of data occupies bits 31:24 of the field, and
padding - if needed - is added in the least significant bytes).

7.4.4.1.5 Receive Data Segments

7.44.2

Receive Data segments compose scatter lists that can be only of memory pointer type. The for-
mat of the receive data segment is similar to the Send Data Segment in Memory Type except for
the start_padding field as shown in Table 40, “Receive Data Segment Format”.

Table 40 - Receive Data Segment Format

31130(29(28(27|26(25]|24(23(22({21|20|19|18|17(16{15[14|13]|12|11(10{9 |8 |7 |6 |5|4 |3 2|1 _%
&
§ Byte Count[30:0]
o) (=3
g =
&
i g
L_key £ "3'
Local address[63:32] §
Local address[31:0] §

Receive Data Segment always use 16 bytes. Multiple memory pointer segments can be present in
the WQE. A byte count value of zero means 2Gbyte.

start_padding can be set to enable Start Padding as explained in Section 3.3.9, “Start of Packet
Padding (RX),” on page 44.

Send WQE Construction Summary

Table 41, “WQE Construction Summary,” on page 83 summarizes how to construct WQEs for
the various transport services and opcodes.

Notes:
* Segments marked with “V” are mandatory.

* Segments marked with “Ptr” are data segments which support pointer only. Data seg-
ments that are marked with “V” support both memory pointer and inline data segments.

* Segments marked with “-” are not part of the WQEs.

* The order of the segments to place in the WQEs are from left to right column.
The table refers to the following WQE segment types:

e CTRL - Section 7.4.4.1.1, “Ctrl Segment,” on page 75

* Eth - Section 7.4.4.1.2, “Eth Segment and Padding Segment,” on page 76

* UMR - Section 7.4.4.1.3, “User-mode Memory Registration (UMR) WQE Format,” on
page 78

Mellanox Technologies 82

J

e Data - Section 7.4.4.1.4, “Send Data Segments,” on page 81

Table 41 - WQE Construction Summary

OpCode Transport CTRL Eth UMR Data
Nop \" - - - -
Eth
Send Eth v Eth - - - \Y%
UMR - - - UMR
Eth

7.4.4.3 Receive WQE Format

Receive WQE is built of 16-byte chunks, each one containing scatter pointer as shown in
Table 40, "Receive Data Segment Format". The number of scatter pointers can vary in different
WQEs, and it is controlled as explained in “Receive Queue” on page 72.

7.44.4

If RQ is subject for WQE signature, first segment is a WQE signature segment (Table 22,
"Receive Queue - Signature Entry Format").

Shared Receive WQE Format

Next segment of Shared Receive WQE format is shown in Table 42.
Table 42 - Shared Receive WQE Format

3113012928 (27(26(25(24(23|22|21|20(19(18[17|16|15|14|13|12(11({10{9 |8 |7 |65 2 (;:f
Next WQE _index

signature 5

<]

fat

Scatter list g

o

The WQE on SRQ is built of octowords. The first one is the next segment, followed by a scatter
list for an incoming message. The format of the data segment is shown in Table 38. Bit 31 of the
first word in each octoword of this segment must be cleared (zero) because the receive WQE can-
not contain data. The number of scatter pointers can vary in different WQEs, and is controlled as
explained in “Receive Queue” on page 72.

Fields of the next/ctrl segment are defined in Table 43, “Next/Ctrl Segment Fields - Shared
Receive WQE”.

Table 43 - Next/Ctrl Segment Fields - Shared Receive WQE

Bits Field Description
15:0 Next WQE Index (pointer) in the WQE buffer to the next WQE to be executed. The pointer is in SRQ stride
index units.

Reserved for continuous SRQ

Mellanox Technologies

83

J

7.5

Table 43 - Next/Ctrl Segment Fields - Shared Receive (Continued) WQE

Bits Field Description

31:24 signature WQE signature. The signature covers entire WQE as well as the SRQ number and WQE index

corresponding to that WQE. Should result in Oxff. This feature is enabled per SRQ.
The signature covers the whole WQE stride including the NULL segments

See Section 9.2.3, “Work Queues Elements Signature,” on page 156

Transport Interface Receive (TIR)

The transport interface receive (TIR) object is responsible for performing all transport related
operations on the receive side. TIR performs the packet processing and reassembly and is also
responsible for demultiplexing the packets into different RQs. Demultiplexing supports delivery
of the packet into one or more RQs that are listed, or a hash based selection of a single RQ from
a list (e.g. Receive Side Scaling).

TIR context is created through the CREATE TIR command. The context can be then modified

ac

cording to the TIR state machine through the MODIFY TIR command. It can be queried

through the QUERY_TIR command. When finalized, TIR context is destroyed through the
DESTROY_TIR command.

The support of TIR and the number of supported TIRs is reported via the QUERY_ HCA com-
mand through the log_max_tir parameter.

TIR Context format is shown in Table 44.

Table 44 - TIR Context Format

3132020221212 2]2{2]2) 1) 1{1f1f1)1)1)L|1| 1|98 7|65 43|2|1]|0

1

0| 9|8 7|6]5[4[3[2,110]9|8]7|6|5[4]3[21|60

SO

400

disp_type

U0

430

ud0

Iro_timeout period usecs Iro_en- Iro_max _msg_sz
able_mask

qyol

UgI-uyl

inline_rqn

Uol

Mellanox Technologies 84

J

Table 44 - TIR Context Format

313 22222222211111111119876543210(3
1/ 0 871615141312 1[0]9 7 5(4|3(2|1]0 z
5 indirect _table
=
&
=
2 5
E =
=
(<8
g
rx_hash fn z transport_domain
= [\
I EN
G =
‘('D
=]
rx_hash_toeplitz_key[319:0] R
=
A
@
=
rx_hash_field selector outer @
(See Table 46, “RX _HASH FIELD SELECT Structure Layout,” on page 87) =
rx_hash_field selector inner @
(See Table 46, “RX _HASH FIELD SELECT Structure Layout,” on page 87) =
1)
(]
=
t
Q
=

TIR Context fields descriptions are shown in Table 45.

Table 45 - TIR Context Fields

Offset

Bits

Name

Description

04h

31:28

disp_type

TIR Dispatching type mode

0x0: Direct - TIR delivers packets directly to the RQ it is associated with,
see inline_rqn. Receive hash function for this dispatcher type must be
HASH_NONE.

0x1: Indirect- TIR delivers packets to RQ via Indirection table, see indi-
rect_table field. TIR selects Indirection Table entry using RX hash value
calculated on selected packet’s fields, see rx_hash field selector
fields.Receive hash function for this dispatcher type must not be
HASH_NONE.

Mellanox Technologies 85

Table 45 - TIR Context Fields

Offset

Bits

Name

Description

10h

27:12

Iro_timeout period usecs

Sets the LRO timer period value in usecs which will be used as LRO ses-
sion expiration time for this TIR.

Please note that if specified value is not supported by HW it will be
adjusted to the nearest timeout period which is < requested timeout
period.

If requested timeout period is smaller than the minimal supported LRO
will not work in this TIR.

The supported LRO timeout periods can be queried via HCA_CAP. Iro_-
timer_supported periods[] as described in table Table 585 — “Per Proto-
col Networking Offload”.

The LRO timer period value can be dynamically modified when required
via MODIFY_TIR command.

SW can query the actual LRO session expiration timeout value via QUE-
RY_TIR (after CREATE_TIR or MODIFY _TIR are completed).
Reserved when LRO is disabled on this TIR.

11:8

Iro_enable mask

LRO enable bitmask

Bit 0: IPv4 LRO - When set LRO for IPv4 is enabled

Bit 1: IPv6_LRO - When set LRO for IPv6 is enabled

Other - Reserved

When bitmask is completely clear LRO is disabled on this TIR.

7:0

Iro_ max msg sz

Sets the max size of coalesced segment in chunks of 256Bytes.

When HCA CAPIro_max_message size mode is 0, this field sets max
LRO IP payload size (TCP header + TCP payload).

When HCA CAP.Iro_max message size mode is 1, this field sets max
LRO message size starting from L2 headers (L2 + L3 + TCP headers +
TCP payload).

0 - disable LRO.

Reserved when LRO is disabled on this TIR.

1Ch

23:0

inline_rqn

Inline RQ number.
Reserved for disp_type != direct.

20h

31

rx_hash_symmetric

Symmetric Hashing (reserved for rx_hash_fn HASH NONE)
When set the L3 and the L4 fields are sorted prior to insertion into the
receive hash function. Reserved for HASH_NONE hash function.

23:0

indirect_table

Indirection Table ID.
Reserved when disp_type != Indirect.

24h

31:28

rx_hash_fn

RX Hash Function

0x0: HASH_NONE - No Hash Function

0x1: HASH_INVERTED_ XORS - Inverted XORS8 generates XORS8
results but with inverted LSBs. The number of inverted LSBs is depen-
dent on the max RQT size. It is log base 2 of the RQT.rqt_max_size.
0x2: HASH_TOEPLITZ - Toeplitz Hash Function

25:24

self Ib_en

Bitmask indicates which Self Loopback traffic to enable
Bit 0: enable unicast - supported only when HCA_CAP.self 1b uc ==
Bit 1: enable multicast - supported only when HCA_CAP.self 1b_mc

23:0

transport_domain

Transport Domain ID.

28h-
4Ch

320

rx_hash -
toeplitz_key[319:0]

Toeplitz hash key
Reserved when rx_hash_fn is not HASH_TOEPLITZ

Mellanox Technologies 86

Table 45 - TIR Context Fields

ner
(See Table 46,

“RX _HASH _FIELD SE-
LECT Structure Layout,”
on page 87)

Offset Bits Name Description
50h 31:0 rx_hash_field selec- This field sets which outer or the only packets headers fields should be
tor_outer selected for RX Hash. See Table 46, “RX _HASH FIELD SELECT
(See Table 46, Structure Layout,” on page 87.
“RX _HASH FIELD SE- When this field is enabled both tunneling and non-tunneling packets can
LECT Structure Layout,” be delivered to that TIR.
on page 87) For tunneling packets this selector refers to the fields of the outermost
headers while for non-tunneling packets the bitmask refers to the packets
only headers.
Note: that rx_hash_fields selector outer cannot be enabled together with
rx_hash_fields selector_inner. This means that if rx_hash_fields_selec-
tor_outer !=0rx_hash_fields selector inner must be zero and vice versa.
Reserved for rx_hash fn HASH NONE
54h 31:0 rx_hash_field selector in- | This field sets which tunneled (inner) packets headers fields should be

selected for RX Hash.

See Table 46, “RX HASH FIELD SELECT Structure Layout,” on
page 87

When this field is enabled only tunneling packets can be delivered to that
TIR.

Only packets which contain the enabled fields can be delivered to that
TIR, this must be done with proper Flow Table rules.

For example if L4 SPORT is enabled and 14_protoco_type == TCP only
tunneled TCP packets are allowed to reach this TIR.

Note: that rx_hash_fields selector_inner cannot be enabled together with
rx_hash_fields_selector_outer. This means that if rx_hash_fields_selec-

Note: rx_hash_fields selector_inner can be enabled only when tun-
neled offload en==1.
Reserved for rx_hash fn HASH NONE

tor_inner !=0 rx_hash_fields selector outer must be zero and vice versa.

Table 46 describes the RX Hash selector which selects which packet fields are used for RX hash
calculation that is used also for traffic spreading (RSS).
Table 46 - RX_HASH_FIELD _SELECT Structure Layout

31/30(29|28|27 25124123(22|21(20(19|18|17|16|15|14|13|12|11(10{9 |8 |7 |6 |54 |3 2|1 O_%
&

&=

2 .

g |2 selected_fields =

S B

(¢} a

Mellanox Technologies 87

J

Table 47 - RX_HASH_FIELD _SELECT Structure Field Descriptions

Offset

Bits Name

Description

Access

00h

31 13_prot_type

This field sets the L3 protocol type (IPv4 or IPv6) SRC_IP and
DST _IP fields refer to:

0: IPv4

1: IPv6

Ifboth SRC _IP and DST _IP are disabled this field is ignored and
it does not impact the RX hash behavior.

30 14 _prot_type

This field sets the L4 protocol type (TCP or UDP) L4 SPORT
and L4 DPORT fields refer to:

0: TCP

1: UDP

If both L4 SPORT and L4 DPORT are disabled this field is
ignored and it does not impact the RX hash behavior.

29:0 selected_fields

Bitmask which sets which packets headers fields should be
selected for RX Hash.

Each bit represents a field as described below

0: SRC IP

1: DST_IP

2: L4 SPORT

3: L4 DPORT

4: IPSEC_SPI

5-29: reserved

Only packets which contain the enabled fields can be delivered
to that TIR, this must be done with proper Flow Table rules.
For example if L4 SPORT is enabled and 14_protocol type ==
TCP only TCP packets are allowed to reach this TIR.

Note that if this field refers to tunneling packets only tunneling
packets with proper inner headers are allowed to reach this TIR.

To modify a TIR, software provides a bitmask of the various fields that are being changed (bit-
mask not relevant to CREATE TIR command). The following table summarizes the bitmasks
and the supported state transitions where bits can be set.
Table 48 - MODIFY_TIR Bitmask

® =
: : = | 3
Bit Field > = Comment
=
=1
0 |LRO R o
* lro_enable _mask
* lIro_timeout period usecs
e lIro_max_ip payload size
1 » indirect table
2 Hash R
e rx_hash fn

* rx_hash symmetric

» rx_hash toeplitz_key

* rx_hash field selector outer
* rx_hash field selector inner

Mellanox Technologies

88

J

7.6

Table 48 - MODIFY_TIR Bitmask

@ =
. . = | 3
Bit Field > S Comment
= |
= =
4 self Ib_en R (0] Supported only if HCA_-
CAPself Ib_en_modifi-
able==
Legend

* R - Required parameter

* O - Optional parameter

Transport Interface Send (TIS)

The transport interface send (TIS) object is responsible for performing all transport related oper-
ations of the transmit side. Messages from Send Queues get segmented and transmitted by the
TIS including all transport required implications, e.g. in the case of large send offload, the TIS is
responsible for the segmentation.

TIS context is created through the CREATE_TIS command. The context can then be modified
through the MODIFY_TIS command. It can be queried through the QUERY_TIS command.
When finalized, TIS context is destroyed through the DESTROY TIS command.

The support of TIS and the number of supported TISes is reported via the QUERY HCA com-
mand through the log _max_tis parameter.

TIS Context format is shown in Table 49.

Table 49 - TIS Context Format

3131222212022 222111y 1f1}1|1)1{1]9|87|6|5 43210

110918 7|6(5]4|3[2{1{0]98]7|6|5[4]3|2(1]0

18O

qo0

qoz-ur0

transport_domain

Li44

Ugc

UD6-UDT

Mellanox Technologies 89

J

7.7

TIS Context fields descriptions are shown in Table 50.

Table 50 - TIS Context Fields

Offset Bits Name Description
00h 19:16 prio Ethernet Priority in prio[3:1].
24h 23:0 transport_domain Transport Domain ID.

To modify a TIS, software provides a bitmask of the various fields that are being changed (bit-
mask not relevant to CREATE TIS command). The following table summarizes the bitmasks
and the supported state transitions where bits can be set:

Table 51 - MODIFY_TIS Bitmask

a =

. . = | 3

Bit Field > =

[

= 5|

= =

0 prio R (0]
R

NONE |transport_domain

Legend
* R - Required parameter

* O - Optional parameter

Receive Queue (RQ)

The Receive Queue (RQ) object holds the destination for incoming packets/messages including
certain offloads. RQs are attached to a TIR/Sniffer and report completions to their completion
queue.

Multiple RQ types are supported: memory RQ type (which can be inline memory or RMP).
Inline memory RQs include a work queue that is used to handle the incoming data memory deliv-
ery. RMP RQs do not have individual buffer to handle the incoming data but rather point to an
RMP object, which can be shared across multiple RQs. The RMP object provides memory for
handling incoming messages. RMP objects are described in detail in Section 7.10, “Receive
Memory Pool (RMP),” on page 104. RQ context is subject to a well defined state transitions as
illustrated in Figure 16.

Mellanox Technologies 90

any state

MODIFY_RQ
(RDY2RDY)

Figure 16: RQ States

MODIFY_RQ
(2RST)

_
MODIFY_RQ

(RDY2ERR) Command
______________ Interface

Transition

Command
Interface/HW
Transition

RQ context is created through the CREATE RQ command. The context can be then modified
according to the RQ state machine through the MODIFY RQ command. It can be queried
through the QUERY RQ command. When finalized, RQ context is destroyed through the
DESTROY_RQ command.
The support of RQs and the number of supported RQs is reported via the QUERY HCA com-
mand through the log_max_rq parameter.

RQ Context format is shown in Table 52.

Table 52 - RQ Context Format

332222222222111111111198765432102
11098 7|6|5|4|3|2|1{0]9]|8]7 504(3(2(1|60 z
:Tmem_rq_- state =
= type |2
o g 5 S
= s =
& - g =
Z S
g o
9 S
user_index e
=
cqn 2
=

Mellanox Technologies 91 J

Table 52 - RQ Context Format

313 2| 2 2121222 111111119876543210(3
1|0 817 51413121 7 S51413(2(1|0 z
o

@

=

rmpn =

=3

=

=

%

=

)

a

=

wq S

(See Table 54, “Work Queue (WQ) Format,” on page 93) r

RQ Context fields descriptions are shown in Table 53.

Table 53 - RQ Context Fields

Offset Bits Name Description
00h 31 rlkey Reserved LKey enable.
When set the reserved LKey can be used on the RQ.
28 vlan_strip_disable VLAN Stripping Disable
0 - strip VLAN from incoming Ethernet frames
1 - do not strip VLAN from incoming Ethernet frames
27:24 mem_rq_type Memory RQ Type
0x0: MEMORY RQ_INLINE - Inlined memory queue
0x1: MEMORY_RQ_RMP - RMP, RQ points to a remote memory pool
23:20 state RQ state
0x0: RST
Ox1: RDY
0x3: ERR
For QUERY_RQ - the current state is returned
For MODIFY_RQ - the requested state is specified
See Section 7.7.1, “RQ States Summary,” on page 96 for further details.
18 flush_in_error_en If set, and when RQ transitions into error state, the hardware will flush in
error WQEs that were posted and WQEs that will be posted to an RQ.
Otherwise, when RQ enters an error state, HW is not forced to flush in
error all the WQEs, but still can generate completion.
Reserved for mem_rq type == MEMORY_RQ_RMP.
For more details related to RQ Error behavior See Section 7.7.2, “RQ
Error Semantics,” on page 97.
04h 23:0 user_index User_index - an opaque identifier which software sets, which is reported
to the Completion Queue.
Reserved if HCA_CAP.cqe_version==0.
08h 23:0 cqn Completion Queue Number.

Mellanox Technologies 92

Table 53 - RQ Context Fields

10h 23:0 rmpn RMP number. Reserved for non RMP RQs.

30h... 1600 wq Work Queue.
(See Table 54, “Work
Queue (WQ) Format,” on
page 93)

Table 54 summarizes the work queue fields and their applicability to send queues and receive
queues.

Table 54 - Work Queue (WQ) Format

—_
(=]
e}
oo
~
(o)}
(9]
A~ N

dInmeudIs bm
opowr Jurpped pud

page_offset lwm e
=
pd &
=
uar_page 8
=
dbr_addr[63:32] =
=
dbr_addr[31:0] =
=
hw_counter =
=
SW_counter =
=
log wq pg sz

Mellanox Technologies | 93 J

Table 54 - Work Queue (WQ) Format

33222222222211111111119876543210(3
1101918 7|6|5|43]2[1]0[9]|8]7 5(4|3(2|1]0 z
pas(0] 9
7z
Q
N
=
pas[1] Q
7
Q
Q
=
Work Queue fields descriptions are shown in Table 55.
Table 55 - Work Queue (WQ) Fields
A
Offset Bits Name Description 8‘ g 5
00h 31:28 wq_type WQ type v v |v
0x0: WQ_LINKED_LIST - Linked List
0x1: WQ_CYCLIC - Cyclic Descriptors
Send Queue WQ must be set to 1.
27 wq_signature If set, WQE signature will be checked on this WQ. v iv|v
26:25 end padding_mode Scattering end of incoming send message (or raw Eth v |V
packet)
0: END_PAD NONE - scatter as-is
1: END_PAD ALIGN - pad to cache line alignment
other reserved
Note that padding does not go beyond the receive WQE
scatter entry length.
24 reserved v
20:16 page offset Page offset in offset in quanta of (page_size / 64) v v |v
15:0 Iwm Limit Water Mark when WQE count drops below this %
limit, an event is fired.
0- Disabled
08h 23:0 pd Protection Domain. v v |v
Used for accessing data through WQEs (scatter/gather).
0Ch 23:0 uar_page UAR number allocated for ringing DoorBells for this v
wQ.
For RQ this field is required only if cd_slave is enabled
otherwise this field is reserved.
10h 31:0 dbr_addr[63:32] Physical address bits of DB Record v iv|v
14h 31:0 dbr_addr[31:0] Physical address bits of DB Record v v |v
Mellanox Technologies 94

J

Table 55 - Work Queue (WQ) Fields

A
Offset Bits Name Description g g 5
18h 31:0 hw_counter Current HW stride index v v |v
Points to the next stride to be consumed by HW). Bits
[31:16] are reserved.
This field is available through the QUERY commands
only. Otherwise reserved.
1Ch 31:0 sw_counter Current SW WQ WQE index v | v |v
Points to the next stride to be produced by SW. Bits
[31:16] are reserved.
This field is available through the QUERY commands
only. Otherwise reserved.
20h 19:16 log_wq_stride The size of a WQ stride equals 2*log_wq_stride. vi|iv|v
12:8 log_ wq pg sz Log (base 2) of page size in units of 4Kbyte v v |v
4:0 log_wq_sz WQ size in Bytes is vi|v|v
2"(log_wq_size + log_wq_stride)
log_wq_sz must be less than HCA CAP.log max _wq_-
size
COh-... | 64 pas|...] (See Table 138, Array of physical address structure (PAS) that map the v v |v
“Physical_Address_Struc- | work queue.
ture (PAS) Layout,” on
page 193)

To modify an RQ, software provides a bitmask of the various fields that are being changed.

Table 56 summarizes the bitmasks and the supported state transitions where bits can be set:

Table 56 - CREATE_RQ and MODIFY_RQ Bitmask

2 zlzlg|.
Bit Field E : é S z
z | = 2| Z
RQ none |state R R R R R
none |[rlkey R
none |cs R
1 vsd R (0] 0]
none |rq_type R
none |rq_index R
none |cqn R
none |rmpn R
none |flush in_error en R
wQ none |wq_type R
none |wq_signature R

Mellanox Technologies

95

J

7.71

Table 56 - CREATE_RQ and MODIFY_RQ Bitmask

@]
IEEIEAR
Bit Field = S S S z
1K
=)
none |end padding mode R
none R
none |log wq pg sz R
none |log wq_stride R
none |log wq size R
none |page offset R
none |pd R
none |uar page N/A
none |dbr addr R
none |pasl...] R
Legend
* R - Required parameter
* O - Optional parameter
RQ States Summary
Table 57 summarizes the RQ states.
Table 57 - RQ States Summary
TIR | Rro o
RMP Associate Description
State
d?
None ALL RST | Doorbells are not processed and WQEs are not flushed.
(RQ type is Incoming messages are silently dropped or never reach the Receive Queue.
Direct) Note: Prior to moving an RQ from RST into RDY state, the device driver has to ini-
tialize RQ DoorBell counter to zero.
No RDY | Work Requests can be submitted to the Receive Queue.
Incoming messages never reach the RQ.

YES RDY | Work Requests can be submitted to the Receive Queue.
Incoming messages are processed normally.

ALL ERR | IfRQ.flush_in_error en is enabled, Work Requests submitted to the Receive Queue
are flushed in error. Otherwise, RQ is not forced to flush the posted Work Requests
but Work Requests cannot be submitted to the Receive Queue and incoming mes-
sages are silently dropped or never reach the RQ. See Section 7.7.2, “RQ Error
Semantics,” on page 97.

Mellanox Technologies 96

7.7.2

7.7.21

7.7.2.2

Table 57 - RQ States Summary

TIR RO
RMP Associate Description
a2 State
With RMP ALL RST, | Work Requests can be submitted to the corresponding RMP.
Memory RQ ERR | Incoming messages are silently dropped or never reach the RQ.
;}/III]);I\/IISO_ NO RDY | Work Requests can be submitted to the corresponding RMP.
RY RQ R Incoming messages never reach the RQ.
gII\I:IP state is YES RDY | Work Requests can be submitted to the corresponding RMP.
Incoming messages are processed normally.

RDY
With RMP. ALL RST, | Work Requests can be submitted to the corresponding RMP.
Memory RQ ERR | Incoming messages are silently dropped or never reach the RQ.
type is
MEMO-
RY RQ R ALL RDY | Work Requests can be submitted to the corresponding RMP.
MP When an RQ tries to dequeue a WQE from the corresponding RMP, the RQ is placed
RMP state is in the ERR state and RQ Catastrophic Error event is generated.
ERR If not, the TIR that is connected to an RQ incoming messages never reach the RQ.

RQ Error Semantics

Memory RQ with Inline Memory Queue

A memory RQ with an inline receive memory queue (not connected to RMP) supports the fol-
lowing completion modes when it enters an error state:

* Flush in error WQEs that were posted and WQEs that will be posted to the RQ.

* When RQ enters Error state, it is not forced to flush in error all the WQEs but can still
generate completions.

RQ.flush_in_error_en flags set the completion mode. For more details related to behavior of
flush_in_error_en flag please refer to Table 52, “RQ Context Format,” on page 91.

RQ Associated with RMP

Error semantics on RQs attached to RMPs are slightly different from those of regular RQs. If an
RQ enters the error state, the WQEs that have already been de-queued from the RMP are com-
pleted with error or completely flushed. The rest of the WQEs are left intact in the RMP and the
RMP state is not affected by the error.

If failure occurs while de-queuing a WQE, the RMP moves to the error state and an affiliated
asynchronous event is generated. While the RMP is in the error state, RQs can be attached or
detached from the RMP and WQEs can still be posted. RQs that attempt to dequeue a WQE from
the RMP are moved to the error state by hardware.

To clean up an RMP in error state, SW has to destroy all RQs that are attached to the RMP and
then destroy the RMP. After all resources have been destroyed, they can be reopened again, with
the RMP opened first.

RQs attached to RMP flushing semantics differ from regular RQs flushing semantics. While reg-
ular RQs can be configured to flush all WQEs that are posted after an error is introduced, RMPs
tend to minimize the flushing. Since they are shared, flushing WQEs can impact other RQs shar-

Mellanox Technologies 97

7.8

ing the same RMP. Therefore, if an error is detected on an RQ attached to an RMP, only WQEs
that have already been de-queued from the RMP for processing by the errant RQ are flushed. The
rest of the WQEs on the RMP are unaffected by the error.

After RMP flushing is complete, the ‘Last WQE Reached’ event (See Table 82, “Event data
Field - SQ/RQ Events Layout,” on page 136) is generated for the errant RQ. (If no WQEs need to
be flushed, this event is generated as the RQ enters the error state.) Thus, no new completions are
reported on the specific RQ until the RQ state is modified.

RQ Table (RQT)

RQT object holds a table of RQs. TIR points to RQT and uses it as indirection table. RQT allows
to dispatch the packet only to single RQ from the table, accessed by table index.

RQT context is created through the CREATE RQT command. The context can be then modified
through the MODIFY RQT command. It can be queried through the QUERY RQT command.
When finalized, RQT context is destroyed through the DESTROY RQT command.

The support of RQT and the number of supported RQTs is reported via the QUERY HCA com-
mand through the log_max_rqt parameter.

Table 58 - RQT Context Format

3p3)2(2(2 2p 2 2p 2] 20 2|2\ L b b L1987 6050 4) 3121 110]|0
1{0] 98| 7654321098 7|6[5]4]3|21]0 z
S
S
7z
)
=
rqt_max_size =
=
rqt_actual size >
=
o
=
fes)
@
=
rq_num(0] 2
=
rq_num([1] =
=
RQT Context fields descriptions are shown in Table 59.
Table 59 - RQT Context Fields
Offset Bits Name Description

14h 15:0 rqt_max_size

Sets the max allowed rqt_actual_size. If command attempts to set rqt_ac-
tual size higher than rqt_max_size the command fails and RQT does not
change. This field must be set according to HCA CAP.log_max_rqt_size
limitation, otherwise the command fails.

rqt_max_size must be power of two.

Mellanox Technologies 98

Table 59 - RQT Context Fields

Offset Bits Name Description

18h 15:0 rqt_actual size The number of entries in this Receive Queues Table.
rqt_actual size must be power of two and <= rqt_max_size.

FOh-... | 23:0 rq_num]...] Table of RQs.
Note that the same RQN is allowed to appear multiple times.
This table can be used as indirection table for RSS.

7.9 Send Queue (SQ)

The Send Queue (SQ) object holds the descriptor ring used to send outgoing messages and pack-
ets. The SQ is attached to a TIS and reports completions to its completion queue.

SQ context is subject to a well defined state transitions as illustrated in Figure 17.

Figure 17: SQ States

(0]
Y
8 MODIFY_SQ
(2RST)
any state

MODIFY_SQ >

(RDY2ERR) Command
____________ Interface

Transition

Command

Interface/HW
MODIFY_SQ Transition

(RDY2RDY)

SQ context is created through the CREATE SQ command. The context can be then modified
according to the SQ state machine through the MODIFY SQ command. It can be queried
through the QUERY SQ command. When finalized, SQ context is destroyed through the
DESTROY_SQ command.

Mellanox Technologies 99

The support of SQs and the number of supported SQs is reported via the QUERY HCA_ CAP
command through the log max_sq parameter. SQs are typically associated with a single TIS. For
support of SQ association into multiple TISes, check the QUERY HCA_ CAP max_tis _per sq.

SQ Context format is shown in Table 60.

Table 60 - SQ Context Format

312y 2)2]2(2(222]2]2|1]1
0] 9 7016|5432 1[09]38

[ee}

U9 I0IId Ul ysnpy

user_index

cqn

tis_num[0]

UdT | u8c-uye | 4oc | udl

wq
(See Table 54, “Work Queue (WQ) Format,” on page 93)

B (013

Mellanox Technologies 100

J

SQ Context fields descriptions are shown in Table 61.

Table 61 - SQ Context Fields

Offset

Bits

Name

Description

00h

31

rlkey

Reserved LKey enable.
When set the reserved LKey can be used on the SQ.

29

fre

Fast Register Enable.
When set, the SQ supports Fast Register WQEs.

28

flush_in_error_en

If set, and when SQ transitions into error state, the hardware will flush in
error WQEs that were posted and WQEs that will be posted to SQ.
Otherwise, when SQ enters an error state HW is not forced to flush in
error all the WQEs.

For more details related to SQ Error behavior refer to Section 7.9.2,

“SQ Error Semantics,” on page 103.

26:24

min_wgqe_inline_mode

Sets the inline mode for the SQ.

min_wqe_inline_mode defines the minimal required inline headers in Eth
Segment of the SQ’s WQEs. If Eth Segment of the WQE does not contain
the required inlined headers, the packet is silently dropped.

Note: SQ.min_wqe_inline_mode must be >= Nic_vport.min_sq_wqe_in-
line_ mode. See Table 15, “NIC_Vport Context Layout,” on page 66.
For more details - See Section 7.4.4.1.2, “Eth Segment and Padding Seg-
ment,” on page 76.

23:20

state

SQ state

0x0: RST

0x1: RDY

0x3: ERR

For QUERY_SQ - the current state is returned

For MODIFY_SQ - the requested state is specified

For further details See Section 7.9.1, “SQ States Summary,” on
page 103.

04h

23:0

user_index

User_index - an opaque identifier which software sets, which will be
reported to the Completion Queue.
Reserved if HCA_CAP.cqe_version==0.

08h

23:0

cqn

Completion Queue Number

20h

31:16

tis_Ist sz

The number of entries in the list of TISes. This is the list of Transport
Interface Send (TISes) that are associated with this SQ.

2Ch

23:0

tis_num[0]

List of TIS numbers.
Note: in this revision of PRM, only a single TIS is supported

30h...

1600

wq

(See Table 54, “Work
Queue (WQ) Format,” on
page 93)

Work Queue

Mellanox Technologies 101

To modify an SQ, software provides a bitmask of the various fields that are being changed.

Table 62 summarizes the bitmasks and the supported state transitions where bits can be set.
Table 62 - CREATE_SQ and MODIFY_SQ Bitmask

2 2| E| 8.
Bit Field 2008 | S| S|
AL IR
=)
SQ none |state R R R R R
none |rlkey R
none |fre R
none |sq index R
none |cqn R
none |tis_Ist sz R
none |tis_num[0] R
none |flush in error en R
none |min wqe inline mode R
0 packet pacing_rate limit_index R o (0] (¢ o
wQ none |wq_type R
none |wq_signature R
none |end padding mode N/A
none |cd slave R
none |log wq pg sz R
none |log wq_ stride R
none |log wq_size R
none |page offset R
none |lwm N/A
none |pd R
none |uar_page R
none |dbr addr R
none |pasl...] R
Legend

* R - Required parameter

* O - Optional parameter
* N/A - Not Applicable (irrelevant for SQs)

Mellanox Technologies

102

J

7.9.1

7.9.2

7.9.3

SQ States Summary

Table 63 summarizes the SQ states.

Table 63 - SQ States Summary

SQ .

State Description

RST Doorbells are not processed and WQEs are not flushed.

Note: Prior to moving an SQ from RST into RDY state, the device driver has to initialize SQ DoorBell
counter to zero.

RDY | Work requests are processed normally.

ERR | IfSQ.flush_in_error en is enabled, Work Requests submitted to the SQ are flushed in error. Other-
wise, an SQ is not forced to flush the posted Work Requests but Work Requests cannot be submitted to
the Send Queue.

See Section 7.9.2, “SQ Error Semantics,” on page 103.

SQ Error Semantics

SQ supports the following completion modes when it enters an error state:
* Flush in error WQEs that were posted and WQEs that will be posted to SQ.
¢ When SQ enters Error state it is not forced to flush in error all the WQEs.

SQ.flush _in_error en flags set the completion mode. For more details related to the behavior of
flush_in_error_en flag please refer to Table 60, “SQ Context Format,” on page 100.

Send WQE Inline Header

Each SQ’s WQE must contain a minimal amount of packet headers inlined in the WQE’s Eth
Segment. Send WQEs with inline headers less than the required are dropped. The device sup-
ports different inline modes that are described in Section 7.9.3.1, “Inline Modes,” on page 104,
each inline mode requires a different minimal number of inline headers. The required inline
modes can be queried by HCA CAP.wqe inline_mode.

HCA_CAP wqe inline modes:
¢ Mode 0 - The inline mode is L2.

* Mode 1 - The minimal required inline headers are set by SQ.min_wqe_inline_mode.
Send WQEs with inline headers less than the required by SQ.min_wqe_inline_mode
are dropped. The device supports different inline modes that are described in
Section 7.9.3.1, “Inline Modes,” on page 104. Each inline mode requires a different
minimal number of inline headers. NIC Vport Context defines the minimal inline mode
required for all SQs that belong to NIC Vport (See Section 7.3, “NIC_Vport Context -
NIC Virtual Port Context,” on page 66). An attempt to create SQ with inline mode <
minimal required by the Vport NIC will fail. SW must query the required minimal
inline header by reading the NIC Vport Context field using QUERY NIC VPORT -
CONTEXT (my Vport). On SQ creation, the NIC driver must set the minimal required
inline header for the created SQ by setting SQ.min_wqe_inline mode field.
SQ.min_wqe_inline_ mode must be >= NIC Vport Context min_sq wqe_inline_mode.
Mode 2 - No inline headers are required.

Mellanox Technologies

103

J

-

7.9.31

7.10

Inline Modes

Mode 0: None - no inline headers are required.

Mode 1: L2 - for LLC/SNAP frames, the packet inlined headers must include Max (17
Bytes, L2 headers till the last EtherType). For non LLC/SNAP frames, the packet
inlined headers must include L2 headers till the last EtherType.

Mode 2: IP - for packets that carry IP header, the packet inlined headers must include up
to the end of the IP header. For packets that do not carry IP header, “L2” mode rules
should be applied.

Mode 3: TCP/UDP - for packets that carry TCP/UDP header, the packet inlined headers
must include up to the end of the TCP/UDP header. For packets that do not carry TCP/
UDP header, “IP” mode rules should be applied.

Mode 4: reserved.

Mode 5: Inner L2 - for tunneled packet, the packet inlined headers must include up to
the end of the last inner EtherType. For non-tunneled packets, “TCP/UDP” mode rules
should be applied.

Mode 6: Inner IP - for tunneled packets that carry inner IP header, the packet inlined
headers must include up to the end of the inner IP header. For packets that do not carry
inner IP header, “inner L2” mode rules should be applied.

Mode 7: Inner TCP/UDP - for tunneled packets that carry inner TCP/UDP header, the
packet inlined headers must include up to the end of the inner TCP/UDP header. For
packets that do not carry inner TCP/UDP header, “inner IP” mode rules should be
applied.

Receive Memory Pool (RMP)

The Receive Memory Pool (RMP) object holds the destination for incoming packets/messages
that are routed to the RMP through RQs. RMP enables sharing of memory across multiple
Receive Queues. Multiple Receive Queues can be attached to the same RQ and consume memory
from that shared poll.

When using RMPs, completions are reported to the CQ pointed to by the RQ.

RMP context is subject to a well defined state transitions as illustrated in Figure 18.

Mellanox Technologies

104

J

CREATE_RMP

Figure 18: RMP States

(RDY2ERR)

MODIFY_RMP

(RDY2RDY)

» Command Interface Transition
» Command Interface/HW Transition

RMP context is created through the CREATE RMP command. The context can be then modified
according to the RMP state machine through the MODIFY RMP command. It can be queried
through the QUERY RMP command. When finalized, RMP context is destroyed through the

DESTROY_RMP command.

The support of RMP and the number of supported RMPs is reported via the QUERY HCA CAP

command through the log_max_rmp parameter.

RMP Context format is shown in Table 64.

Table 64 - RMP Context Format

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

1SPO

400

dbm AJI J1[0AD JISeq

U0

UD1-480

wq

(See Table 54, “Work Queue (WQ) Format,” on page 93)

(1]

Mellanox Technologies 105

J

RMP Context fields descriptions are shown in Table 65.

Table 65 - RMP Context Fields

(See Table 54, “Work
Queue (WQ) Format,” on
page 93)

Offset Bits Name Description

00h 23:20 state RMP state
0x1: RDY
0x3: ERR
For QUERY_RMP - the current state is returned
For MODIFY_RMP - the requested state is specified
Must be RDY for CREATE_RMP
For further information, See Section 7.10.1, “RMP States Summary,” on
page 107

04h 31 basic_cyclic_rcv_wqe 0: cyclic receive wqe always includes the 16 byte of ctrl (signature field).
1: cyclic receive wqe includes the 16 bytes of ctrl only when wq_signa-
ture==1.
Valid only if HCA_CAP. basic_cyclic_rcv_wqe==1 and wq.wq_-
type=—=WQ_CYCLIC

30h-... | 1600 wq Work Queue

To modify an RMP, software provides a bitmask of the various fields that are being changed.
Table 66 summarizes the bitmasks and the supported state transitions where bits can be set.
Table 66 - CREATE_RMP and MODIFY_RMP Bitmask

Bit

Field

AQIATAQA

RMP

none

state

wQ

none

wq_type

none

wq_signature

none

end padding_mode

none

log wq pg sz

none

log wq_stride

none

log wq_size

none

page_offset

Iwm

none

pd

ANA|IAR A AR A A A AN ALVIID
7]

none

uar_page

N/A

none

dbr_addr

Mellanox Technologies 106

J

7.10.1

7.1

7111

7.11.2

Table 66 - CREATE_RMP and MODIFY_RMP Bitmask

Bit Field

7~ |dINd ALVHYD
A@IZAQA

none |pasl...]

Legend
* R - Required parameter

* O - Optional parameter

RMP States Summary

RMP implements the two following states:

* RDY - this is the initial state. In this state software can post WQEs to the RMP. RMP
provides WQEs to RQs attempting to consume WQEs normally.

* ERR —in this state software can post WQEs to the RMP. RMP does not provide WQEs
to RQs attempting to consume WQESs; instead it causes the RQs to transition into the
ERR state.

For further details on RMP states with correlation to RQ states, refer to Section 7.7.1, “RQ States
Summary,” on page 96.

Flow Table

Packet processing by the device requires classifying them into flows. Each flow may have a dif-
ferent processing path and may lead to a different destination. Packet classification is done using
the Flow Table mechanism.

Position in Processing Flow

Flow tables are used in several stages of packet processing flow. Each stage has a unique set of
Flow Tables. The following processing stages using Flow Tables are defined:

¢ NIC Receive
¢ NIC Transmit

Each Flow Table type of the above list may supports a subset of the Flow Table capabilities and
may have special characteristics and limitations described in “Characteristics of Flow Table
Types”.

General Structure

The Flow Table is built as a ternary content-addressable memory (TCAM). Each entry in the
Flow Table represents a Flow by defining a match criteria and a match value. Packets processed
by the Flow table attempt to match every entry, in order, starting at entry 0. The first entry that
matches the packet defines the processing actions that should be immediately applied to the
packet. The matching Flow is considered as ‘hit’ by the packet.

Mellanox Technologies 107

J

-

7.11.2.1 Match Criteria
The Flow Table entry match criteria is defined by a set of masks.
» Packet header field - fields derived from parsing the packet:
¢ MAUC header - Source Address, Destination Address, Ethertype
* VLAN header - VLAN ID, Priority (PCP), CFI/EDI

o IPv6(v4) header - Source Address, Destination Address, Traffic Class (Type Of Service), Next Header
(Protocol) TCP header - Source Port, Destination Port, Flags

* UDP header - Source Port, Destination Port, Flags

* VXLAN header - VNI

* GRE header - Key, Protocol

* For supported encapsulation packets MAC, VLAN, TCP and UDP headers for the inner packet

Set bit in a mask means the appropriate bit in the appropriate field in the match value should be
compared to the corresponding bit from the processed packet. Cleared bit means the appropriate
bit in the appropriate field in the match value is ignored.

7.11.2.2 Processing Actions

When a packet matches a Flow, the actions specified for the Flow are applied. The possible
actions for a Flow are as follows:

» Drop - Packet processing is stopped

» Forward - Packet processing continues in one or more processing entities specified in
the Flow Table entry.

* Allow - Packet processing continues in a well-known pre-defined manner.
* Count - increment a packet counter, and add the packet size to a byte counter.

When multiple actions are set for the same Flow (if applicable), the order of their application is
not defined.

Note: Drop, Forward and Allow actions a Mutually Exclusive. One of them must be applied to every
Flow.

7.11.2.3 Flow Table Chaining

Packet classification may require a hierarchal approach. For that purpose, a Flow with a Forward
action may specify another Flow Table as the next processing entity for the packet. The destina-
tion Flow Table must be of the same type (i.e. belongs to the same processing stage). A packet
matching this flow will continue to search for another match in the destination Flow Table start-
ing at the first Flow. For every Flow Table type there is a single root table.

Chaining Flow Tables must never create loops.

7.11.2.4 Multi-Processing Paths

When the same packet needs to be processed multiple times, a Flow with a Forward action may
indicate multiple destination processing entities. A packet matching this flow will be processed at
each processing entity specified in the Flow separately. This mechanism may be used for multi-
casting the packet to several destinations.

Multi-processing paths to multiple Flow Tables must never be nested.

K Mellanox Technologies 108

-

7.11.2.5 Default Behavior

Each Flow Table must be explicitly allocated before it may be used. In the absence of the root
Flow Table in a given processing stage, a default behavior is applied for all packets going
through this stage. The same default behavior is applied for a packet that matches a Flow with
Default action or a packet that does not match no any Flow.

Each Flow Table Type has a defined default behavior described in “Characteristics of Flow Table
Types”. This behavior can be overridden by allocating the root Flow Table, and defining a Flow
with an empty match criteria and the required action.

7.11.2.6 Invalid Flows

Prior to the definition of a Flow in a Flow Table or after deleting a Flow, the Flow is Invalid.
Packets never ‘hit’ Invalid Flows. If during lookup on a certain Flow Table an Invalid Flow is
encountered, the packet simply moves on to the next Flow in the table in attempt to find a match.

7.11.2.7 Packet Classification Ambiguities

The match criteria of a single Flow may include any number of fields. It is the responsibility of
the programmer to assure that once packet classification is done, all fields that define the packet
class were matched, and no ambiguity remains.

For example, matching IP destination address does not guarantee that the packet is an IP packet.
The Flow (or any of the Flows leading to it through Flow Table Chaining) must match the Ether-
type field of the packet to assure an IP packet of the correct version.

In addition, a flow should not match non-existing fields of a packet, as defined by the packet
classification process. For example, matching destination IP address is not allowed for flows
matching Ethertype to a non-IP value.

Since packet classification process may span multiple flows in multiple Flow Tables, packet clas-
sification ambiguities or non-existing field matching should be avoided by the programmer. Fail-
ing to do so may result in undefined behavior, either failing the flow configuration or causing
errors in packet classification.

7.11.2.8 Flow Statistics

Each Flow may collect statistics of the traffic matching the flow. The statistics are gathered in a
flow counter, collecting the number of packets matching the flow and their total Byte count.

7.11.2.9 Flow Tagging

Each Flow may be marked with a tag, the attached packet matching the Flow, and exposed in the
Completion report (CQE) flow tag field. The tag could be used to identify the Flow through
which the packet was processed. The CQE will reflect last tag encountered during packet pro-
cessing. An unmarked Flow, will not modify the current tag attached to the packet.

Note: A Flow tag should not be set for Flows beyond Multi-Processing split, if a Flow tag was
already set prior to the split. The value of the tag in the CQE is not defined in these cases.

Mellanox Technologies 109

J

-

7.11.3 Configuration Interface

7.11.3.1 Allocating a Flow Table

A new Flow Table is allocated using the “CREATE FLOW_TABLE - Allocate a New Flow
Table” command. The processing stage that the Flow Table belongs to is indicated in table type
field. The support for each of the Flow Table types is indicated by ft support field in “Flow
Table NIC Capabilities Layout”, under the appropriate flow table properties <type>. When
applicable the Vport holding the Flow table is indicated in Vport field.

The number of Flows in the table is indicated in log_size field. The table size must not exceed
log max_ft size in “Flow Table NIC Capabilities Layout”, under the appropriate
flow_table properties <type>. The number of allocated Flow Tables must not exceed log max-
ft num in the same capabilities structure.

7.11.3.2 Selecting the Root Flow Table

The root Flow Table for each Flow Table Type is defined, by default, as the Flow Table with level
0. Only a single Flow Table with level 0 is allowed.

Explicitly setting or replacing the root Flow Table is allowed by using SET FLOW_TABLE -
ROOT command. The new root Flow Table should be allocated prior to execution of the com-
mand. The previous root table (if exist) is not deleted. Its relevant resources need to be released
explicitly if no longer needed. The support for setting the root table is indicated by HCA -
CAP.modify_root.

7.11.3.3 Flow Table Level

When using an hierarchal approach for packet classification, the different hierarchies (levels)
must be explicitly defined at Flow Table allocation. Chaining Flow tables must be done so a Flow
in a Flow table of a certain level may only point to a Flow Table of a higher level.

When using Multi-Processing Paths, a Flow pointing to multiple Flow Tables or multiple TIRs
must follow these guidelines:

* The Flow table containing this Flow must have a level lower than 64.
* The Flow tables pointed by this Flow (not relevant if the Flow points only to TIRs) must

have a level equal or higher than 64. This does not apply to the last flow table in the
destination list when HCA CAP.nic_rx_multi_path tirs = 1.

The Flow Table level is defined at allocation time by level field in “CREATE FLOW_TABLE -
Allocate a New Flow Table”. It must not exceed max_ft level in “Flow Table NIC Capabilities
Layout”, under the appropriate flow _table properties <type>.

7.11.3.3.1Flow Table Identifier

Upon completion of the Flow Table allocation, a handler is returned in table_id field. This han-
dler is unique for the specific Flow table type and Vport (when applicable).

7.11.3.4 Allocating a Match Criteria - Flow Groups

The match criteria of a Flow is defined before setting the actual Flow. A set of consecutive Flows
in a certain Flow Table with the same match criteria is considered a Flow Groups. Flow Groups a

Mellanox Technologies 110

J

re allocated after the relevant Flow Table is allocated using the “CREATE FLOW_ GROUP -
Define a New Flow Group” command.

The Flow Table a Flow Group belongs to is identified by the table type, table id and vport
(when applicable) fields.

The range of Flows belonging to the Flow Group is defined by start flow index and end -
flow_index fields. A Flow Group could be as little as a a single Flow. The Flow Groups must not
exceed the size of the Flow Table, and must not overlap. a Flow may only be associated with a
single Flow Group.

The match criteria is given in match_criteria field, which is the set of masks as defined in
“Match Criteria”. Each bit in match_criteria_enable field validates a sub-set of the match_crite-
ria.

Each mask in the match_criteria may have one of the following values:

* FULL match - the corresponding field is compared completely, all bits of the mask are
set.

* NONE match - the corresponding field is completely ignored, all bits of the mask are
cleared.

* PARTIAL match - some of the bits of the corresponding field are compared.

A NONE match is supported for all fields in the match_criteria. A FULL match for a field is
supported if the corresponding bit of f¢ field support in “Flow Table NIC Capabilities Layout”

is set. a PARTIAL match is supported if the corresponding bit of f# field bitmask_support in
“Flow Table NIC Capabilities Layout” is set, both under the appropriate flow_table proper-
ties <type>.

Note: The MAC header field destination address (dmac) mask 01:00:00:00:00:00 is also supported if
a FULL match is supported for this field.

7.11.3.4.1Flow Group ldentifier

Upon completion of the Flow Group allocation, a handler is returned in group_id field. This han-
dler is unique for the specific Flow table the Flow Group is associated with.

7.11.3.5 Allocating a Flow Counter

A new flow counter is allocated using the “ALLOC _FLOW_COUNTER - Allocate a Flow
Counter” command. The command returns the flow counter _id handle to a future reference of
the flow counter.

The support for flow counters in each of the Flow Table types is indicated by flow counter field
in Table 148, “Flow Table NIC Capabilities Layout,” on page 204, under the appropriate
flow_table properties <type>.

The number of available flow counters is indicated by max_flow_counter in Table 144, “HCA
Capabilities Layout,” on page 196.

Note: Flow Counters are supported only for NIC Rx, RDMA Rx, Egress ACLs and Sniffer Flow
Tables.

Note: Distributing the Flow Counters between the different Flow Table types (for example between
the eswitch tables and the NIC tables), is outside the scope of this document and left for driver imple-
mentation.

Mellanox Technologies 111 J

-

7.11.3.6 Adding a Flow

A new Flow is defined using the “SET FLOW_ TABLE ENTRY - Set Flow Table Entry” com-
mand.

The Flow Table a Flow belongs to is identified by the table type, table id and vport (when appli-
cable) fields. The Flow Group the Flow belongs to is identified by the group id field.

The location of the Flow inside the Flow Table is defined by the flow index field. The location
must not exceed the range of Flows defined by the Flow Group.

The match value is given in match_value field of the flow context structure. The relevant fields
inside the match value are defined by the match criteria associated with the Flow Group. Any
other field is reserved and should be set to 0x0.

The Flow Tag attached to packets matching the Flow is indicated in flow tag field. A value of
0x0 indicates and unmarked Flow, which does not modify the Flow Tag already attached to the
packet.

The field action holds a list of actions to be applied if a packet matches the Flow, as defined in
“Processing Actions”. Some actions may be set independently, and some are mutually-exclusive.

* Drop, Default and Forward actions are mutually-exclusive.

When a Flow has a Forward action, the number of processing entities the packet should be des-
tined to is specified in destination_list_size. Each destination is defined by a handler destina-
tion_id and a type destination_type. The defined destination types are:

¢ Flow Table
« TIR

When specifying multiple destinations, the order between them is not defined. The destination
list must be comprised of destinations of the same type. The number of destinations in a single
Flow must not exceed log_max_destination in “Flow Table NIC Capabilities Layout”, under the
appropriate flow_table properties <type>.

The total number of valid Flows in all Flow Tables of a single type must not exceed log max_-
Sflow in the same capabilities structure.

When a Flow has a Count action, the number of flow counters associated with the flow is speci-
fied in flow _counter list _size. Each counter is defined by a handle flow counter id. The num-
ber of destinations in a single flow must not exceed log_max_flow counter in Table 148, “Flow
Table NIC Capabilities Layout,” on page 204, under the appropriate flow_table proper-
ties <type>.

Note: Each TIR may only be used in a single type of Flow Table. Adding flows, in Flow Tables
of different types, forwarding to the same TIR is not allowed.

7.11.3.7 Redefining a Flow

An existing flow may be modified. Flow modification is guaranteed to be atomic. That is, once
the flow is modified, new packets will not act according to the old flow definition.
The modified flow must hold all requirements and restrictions applicable for any flow.

The support for modifying a flow is indicated by modify_flow_en field in QUERY HCA CAP
(Table 150, “Flow Table Properties Layout,” on page 205) for the appropriate Flow Table type.
Modifying a flow is done using the SET FLOW_TABLE ENTRY command (See Table 427,
“SET FLOW_TABLE ENTRY Input Structure Layout,” on page294), using opmod

Mellanox Technologies 112

J

value Modify.
The supported modifications are for:

e Action

* flow tag

* Destination list (size and members)

* Flow Counter list (size and members)

Note: The modified fields should be indicated in the bitmask modify_enable. The new values are
taken from the appropriate fields in the flow_context. Other fields in this context should match the
original flow definition. When adding or removing a Forward/Count action, the destination/flow
counter list must be modified as well.

7.11.3.8 Freeing Resources

Flows are invalidated using the “DELETE FLOW_TABLE ENTRY - Invalidate Flow Table
Entry” command. The Flow Table a Flow belongs to is identified by the table type, table id
(when applicable) fields. The Flow Group the Flow belongs to is identified by the group id field.
The location of the Flow inside the Flow Table is defined by the flow index field. A Flow must
be valid (previously added) to be invalidated.

Flow Groups are freed using the “DESTROY FLOW_ GROUP - De-allocate a Flow Group”
command. The Flow Table a Flow Group belongs to is identified by the table type, table id
(when applicable) fields. The Flow Group is identified by the group_id field. A Flow Group can
only be freed if it was previously allocated and all the Flows associated with it are Invalid.

Flow Tables are freed using the “DESTROY FLOW_TABLE - De-allocate a Flow Table” com-
mand. The Flow Table is identified by the table type, table_id (when applicable) fields. A Flow
Table can only be freed if it was previously allocated and all the Flow Groups associated with it
are freed.

Flow Counters are freed using the “DEALLOC FLOW_ COUNTER - De-Allocate Flow

Counter” command. The flow counter is identified by the flow counter_id field. A flow counter
can only be freed if it was previously allocated and all the flows associated with it are freed.

7.11.3.9 Querying Device Database

Flows may be queried using the “QUERY_FLOW_TABLE ENTRY - Query Flow Table Entry”
command. The Flow Table a Flow belongs to is identified by the table type, table id (when
applicable) fields. The Flow Group the Flow belongs to is identified by the group id field. The
location of the Flow inside the Flow Table is defined by the flow index field. A Flow must be
valid (previously added) to be queried.

Flow Groups may be queried using the “QUERY _FLOW_GROUP - Query Flow Group” com-
mand. The Flow Table a Flow Group belongs to is identified by the table type, table id and
vport (when applicable) fields. The Flow Group is identified by the group id field. A Flow
Group must be allocated to be queried.

Flow Tables may be queried using the “QUERY_FLOW_TABLE - Query Flow Table” com-
mand. The Flow Table is identified by the table type, table_id (when applicable) fields. A Flow
Table must be allocated to be queried.

Flow Counters may be queried using the “QUERY_ FLOW_COUNTER — Query Flow Counter”
command. The Flow Counter is identified by the flow counter_id field. A Flow Counter must be

Mellanox Technologies 113

allocated to be queried. When querying the Flow Counter for the statistic of a Flow, the counter
may be atomically reset, by setting the clear field.

7.11.3.10 Special Flows Definition

7.11.3.10.1Prio-Tagged and Untagged Packets

A Flow matching only prio-tagged packets should include the vian_tag field and the first vid
field in the match criteria. In addition, the Flow should match them to 0x1 and 0x0 respectively.
A Flow matching only untagged packets should include the vlan_tag field in the match criteria,
and the Flow should match it to 0x0. To define the same behavior for both types of packets, a sin-
gle flow may be used instead. This Flow should include the vian_tag ficld and the first vid field
in the match criteria, and the flow should match them to 0x0 and 0x0 respectively.

7.11.4 Characteristics of Flow Table Types

7.11.4.1 NIC Receive

* Default Behavior - Drop packet
* Supported Destination types - Flow Table, TIR
* Special limitation:

* Multiple processing paths are supported for multiple Flow Tables.
In case of HCA CAP.nic rx_multi path tirs = 1, multiple processing paths are supported also for
multiple TIRs. See Table 148, “Flow Table NIC Capabilities Layout,” on page 204.
In case of HCA_CAPnic_rx_multi_path_tirs_fts = 1, multiple processing paths are supported also
for single/multiple TIRs followed by single/multiple Flow Tables. See Table 148, “Flow Table
NIC Capabilities Layout,” on page 204.

7.11.4.2 NIC Transmit
* Default Behavior - Forward packet to NIC Vport (Transmit)
» Supported Destination types - Flow Table
* Special limitations:
* Multiple processing paths are not supported

» flow_tag not supported.

7.12 Completion Queues
HCA implements Completion Queues used to post completion reports upon completion of Work
Request. This section discusses CQ structure and operation.
A CQ is an object containing the following entities:

1. Completion Queue Buffer - A virtually-contiguous circular buffer accessible by user-level
software and used by hardware to post completions - writing Completion Queue Elements
(CQEs). This area must be allocated when creating the CQ. Maximum supported CQ size can
be retrieved by the QUERY HCA CAP command (log max_cq sz). CQE size is 64 or 128
bytes and is configured while creating the CQ.

Mellanox Technologies 114 J

2. Completion Queue Context (CQC) - The data structure describing the CQ properties that is
passed to the device by SW while creating the CQ. HCA hardware can support up to 16M
CQs per virtual HCA; the actual number supported by the given HW configuration can be
retrieved by the QUERY HCA CAP command (log max cqs). For more details see “Com-
pletion Queue Context (CQC)” on page 129.

3. CQ DoorBell Record - A structure containing information of recently-posted CQ commands
and consumer index and is accessible by user-level software.

7.12.1 Completion Queue Buffer

A CQ is a virtually-contiguous memory buffer used by the HCA to post completion reports to
and used by application software to poll completion reports from. This buffer is allocated by the
host software at CQ creation and its physical address is passed to the HCA. The memory associ-
ated with this buffer is passed to the HCA as a list of physical pages. CQ buffer must be aligned

on CQE-size boundaryl.

Each CQ buffer contain two objects - CQ and CQ Doorbell Record. The CQ buffer structure is
shown in Figure 19.

Figure 19: Completion Queue Buffer

A
Page_offset[11:6]

3 &
gl @
(2]
2 3 g :
3 g Completion
g = Queue
gl 2
(0]
s 2

S

o

)

Hardware posts completions (writing CQEs) to the CQ. Upon CQEs consumptions, SW updates
the CQ Doorbell Record. In addition to the CQE consumption information, CQ Doorbell Record
contains information about the CQ status (Armed for Event, Armed for Solicited Event).

CQ is a virtually-contiguous circular buffer that contains Completion Queue Entries (CQEs)
posted by the HCA upon completion of I/O operation(s) associated with this CQ. Application
(non-privileged) software can read the CQ buffer to poll completions posted by the HCA. The
buffer is managed by two counters:

* Producer Counter — A counter maintained by hardware and is incremented for every
CQE that is written to the CQ. The least significant bits (as indicated by the CQ.log c-

1.

If CPU cache size is larger than CQE-size, for best performance CQ buffer should be aligned on CPU cache line size and size of CQ buffer
should be at least one CPU cache line.

Mellanox Technologies 115

J

q_size field) of the Producer Counter are referred to as Producer Index. The Producer
Index points to the next entry to be written by hardware in the CQ. See “CQ Counter”
on page 116.

* Consumer Counter — A counter maintained by the application software and is incre-
mented for each CQE polled successfully from the CQ. The least significant bits (as
indicated by the CQ.log_cq_size field) of the Consumer Counter are referred to as Con-
sumer Index. The Consumer Index points to the next CQE to be polled. See “CQ
Counter” on page 116.

Figure 20: CQ Counter

Consumer/Producer Counter (24bits)

-
Consumer/Producer Index
Number of bits is CQ.log _cq_size

Both counters are treated as signed integer numbers by SW.

If the Producer Counter equals the Consumer Counter, then the CQ is empty.
If the Producer Counter minus the Consumer Counter equals the CQ size, then the CQ is full.

Upon polling the CQ successfully (that is, a new CQE is found), software updates the Consumer
Counter which is used by hardware to monitor a potential CQ overflow. If CQ is full while
another CQE needs to be posted to the CQ, then hardware does the following if overflow detec-
tion is enabled:

1. Transfers the CQ to the appropriate error state.
2. Transfers the RQ/SQ to the error state.
3. Generates the appropriate event.

If CQ is full while another CQE needs to be posted to the CQ, and if overflow detection is dis-
abled, then old CQEs may be overwritten.

Mellanox Technologies 116 J

-

7.12.1.1 CQE Format

New CQE format for 64B CQE is shown in Table 67.
Table 67 - 64B Completion Queue Entry Format Layout

31(30(29(28(27|26(25|24(23|22|21|20(19(18|17(16|15[14|13|12|11|{10/9 (8 (7|6 5|4 |3 |2 |1 0%
v
[¢]
(=}
=
g Iro_dup_ack Iro_min_ttl Iro_tcp_win
g = cnt
5E|
il s
= & =
S =
<« =
=R
a
=
Iro_ack seq num x 8
3]
x_hash_result Q o
rx_hash_type _ 3
28
checksum 5
%
=
g Mbd- B v wp vid
W (N —_
o lols I type dr - |% s, 5
~ == R type [

Iro num_seg

srqn/user_index

byte cnt

Iro_timestamp_value/timestamp h

Iro_timestamp_echo/timestamp_1

U8E [Ure | UOE |UDT | U8T | UtT | U0T

s_wqe_opcode flow_tag
wqe_counter signature opcode cqe - °
for- |% §
a
mat =

CQE field descriptions are shown in Table 68.

Mellanox Technologies 117

J

Table 68 - Completion Queue Entry Fields

Bits

Name

Description

0s

pa mey O

lro_time-
stamp_is_valid

This bit is set when CQE’s timestamp field holds LRO timestamp instead of
regular timestamp CQE field) — for details please see Iro_timestamp_value /
timestamp_h and Iro_timestamp_echo /timestamp_1 CQE’s fields.

Valid only for LRO packets (Iro_ num_seg field not clear)

Iro_tcp psh

LRO: one of the packets in the session had a TCP PUSH flag set
Valid only for LRO packets (Iro_ num_seg field not clear)

Iro_abrt

LRO: abort coalescing reason

00 — Max IP payload size exceeded

01 - LRO Timeout

10,11 — LRO Exception or other.

Valid only for LRO packets (Iro_num_seg field not clear)

Iro_dup_ack cnt

Duplicate acknowledgment counter

Number of duplicate acknowledgment that were encountered while creating
the coalesced segment.

Valid only for LRO packets (Iro_num_seg field not clear)

This field should be always zero.

Iro_min_ttl

The minimum HopLimit / TimeToLive of all packets in this segment
Valid only for LRO packets (Iro_num_seg field not clear)

16

Iro_tcp win

TCP window of the last packet in the coalesced segment
Valid only for LRO packets (Iro_num_seg field not clear)

32

Iro_ack seq num

LRO acknowledgment sequence number (last packet in session)
Valid only for LRO packets (Iro_num_seg field not clear)

32

rx_hash_result

RX hash function result
Valid only when rx_hash_type is not zero.

When tunneled bit is set rx_hash_result can be result of hash on inner or on
outer tunneling packet fields. This depends on tunneling type and TIR, which
processed the packet, configuration.

Mellanox Technologies

118

J

Table 68 - Completion Queue Entry Fields

~
=)
Bits Name Description & a:?
=
(=]
8 rx_hash_type RX hashing performed (this field indicates whether CQE reports all other RX | n y
fields. When 0, RX hashing is not valid):
rss_hash_type[1:0] - IP source selected
* 00 -none
+ 01-IPv4
+ 10-1IPv6
* 11 - Reserved
rss_hash_type[3:2] - IP destination selected
* 00 -none
« 01-IPv4
+ 10-1IPv6
* 11 - Reserved
rss_hash_type[5:4] - L4 source selected
* 00 -none
+ 01-TCP
+ 10-UDP
+ 11 -IPSEC.SPI
rss_hash_type[7:6] - L4 destination selected
* 00 -none
« 01-TCP
+ 10-UDP
+ 11 -IPSEC.SPI
16 checksum This field is summarized in Section 3.3.1, “Checksum Offload,” on | n y
page 37.
1 14 ok If this is bit set that means that HW successfully parsed TCP/UDP packetand | n y
that packet's L4 checksum was successfully validated. otherwise this bit is
disabled.
When tunneled bit is set indicates checksum validation status of the inner L4
header.
1 13 ok If this bit is set that means that HW successfully parsed IP packet, the packet | n y
successfully passed HW checks and that packet's IP checksum was success-
fully validated, otherwise this field is disabled.
When tunneled bit is set indicates checksum validation status of the inner IP
header.
1 12_ok L2 known headers are identified according to a set of HW checks. n y
When tunneled bit is set refers to inner frame.
1 ip_frag The bit is set if packet is fragmented (indication is set for [Pv4/IPv6 accord- n y
ingly).
When tunneled bit is set, this bit refers to inner packet.
Mellanox Technologies 119

J

Table 68 - Completion Queue Entry Fields

~
=)
~
B. D . . W
its Name escription o 2
=
-
(=]
3 14_hdr_type 0 - None n y
1 - TCP header was present in the packet
2 - UDP header was present in the packet
3 - TCP header was present in the packet with Empty TCP ACK indication.
(TCP packet <ACK> flag is set, and packet carries no data)
4 - TCP header was present in the packet with TCP ACK indication. (TCP
packet <ACK> flag is set, and packet carries data).
When tunneled bit is set, this field describes the inner packet.
2 13_hdr_type L3 Header Type n y
00 - None
01 - IPv6
10 - IPv4
When tunneled bit is set, this field describes the inner packet.
1 ip_ext_opts For IPv4: n y
1 - IPv4 Options are present in the frame
0 - no IPv4 Options present in the frame
For IPv6:
1 - IPv6 Extensions are present in the frame
0 - no IPv6 Extensions present in the frame
For non IP packet (13_hdr_type == none) undefined.
Supported Ipv6 extensions in the device: Hop By Hop, Routing, Fragment,
Destination, Authentication, Mobile
When tunneled bit is set, this field describes the inner packet.
1 cv Customer VLAN (cVLAN) n
When set - cVLAN was present in the incoming frame and is reported by the
CQE fields: up, cfi, vid
3 up 802.3 priority field. Valid when cv is set. n z
=
&
=
o
=
<
1 cfi 802.3 CFI field. Valid when cv is set. n z
<
m
=2
]
=
<
12 vid 802.3 VLAN-ID field. Valid when cv is set. n z
=
t
=2
o
=
<
8 Iro num_seg Number of coalesced segments of LRO. n y
When clear - LRO was not performed.
Mellanox Technologies 120

J

Table 68 - Completion Queue Entry Fields

=
)
. Qe 7] ~
Bits Name Description o 2
=
-
=
24 user_index If HCA_CAP.cqe_version==1: y y
The user_index which software sets when creating a context (RQ/SQ).
32 byte cnt Byte count of data transferred. y
Applicable for receive completions.
Byte cnt specifies total byte count scattered to the buffer or the CQE (if scat-
ter-to-CQE is enabled).
For padded messages, the padding is excluded.
32 Iro_time- When Iro_timestamp _is_valid is on: y y
stamp_value/time- | This field holds the Timestamp Value (TSval) field of the header of the last
stamp_h coalesced segment.
When Iro_timestamp_is_valid is off:
This field holds the MSB of 64-bit sample of the internal timer taken when
this CQE was generated.
See Section 7.12.10, “CQE Timestamping,” on page 131
32 lro_time- When Iro_timestamp _is_valid is on: y y
stamp_echo/time- This field holds the Timestamp Echo Reply (TSecr) field of the header of the
stamp 1 latest coalesced segment with valid TSecr field.
When Iro_timestamp_is_valid is off:
This field holds the LSB of 64-bit sample of the internal timer taken when
this CQE was generated.
See Section 7.12.10, “CQE Timestamping,” on page 131
8 rx_drop_counter On Raw Eth responder - the number of dropped packets because of no RCV n y
WQE since the last CQE
8 S WQE_OPCODE | On requester - the send WQE opcode y n
24 flow_tag IfHCA_CAP.cqe version==1: n y
» For Raw Ethernet, Indicates the flow_tag which software sets when creating a
flow_entry.
16 wqe_counter wqe_counter of the WQE completed. y y
» For SQ: the sq_wqe_counter is reported (“Send Queue” on page 70)
« For RQ: the rq_wqe_counter is reported (“‘Receive Queue” on page 72)
8 Signature Byte-wise XOR of CQE - signature protection (see “Completion and y y
Event Queue Elements (CQEs and EQEs)” on page 156). CQE is
valid if byte-wise XOR of entire CQE (including signature field) and the
CQE index is 0xff. For 128B CQE, the GRH/inline_64 section is taken into
account if data / GRH was written to it (cqe_format == 2 or grh == 2)
Mellanox Technologies 121

J

Table 68 - Completion Queue Entry Fields

~
=)
Bits Name Description & a:?
=
=
4 Opcode 0 - requester y y
2 - responder - send
13 - requester error.(ERR_CQE format shown in Table 7.12.7, “Com-
pletion With Error,” on page 128)
14 - responder error.(ERR_CQE format shown in Table 7.12.7, “Com-
pletion With Error,” on page 128)
15 - invalid CQE. ownership bit is not valid and the CQE is in HW owner-
ship.
2 cqe_format 0 - no inline data in the CQE y y
1 - inline data in the data_32 segment of the CQE (offsets 00h-1Ch)
2 - inline data in the data_64 segment of the CQE (additional 64B)
3 - Compressed CQE
Please note that if cqe_format == 3, mini_cqe num > 1
1 SE Solicited event. This CQE cause EQE generation for solicited event y y
1 Owner CQE ownership bit. See Section 7.12.3.1, “CQE Ownership,” on page 123. y y
7.12.2 CQ DoorBell Record
CQ Doorbell Records are located in physical address pointed to by the CQ Context. CQ Doorbell
Records are aligned on an 8B boundary. Software updates the update ci after CQEs are reaped
from the CQ (Poll for Completion verb). Software updates cmd_sn, cmd and cq ci when CQ is
armed for event generation (Request Completion Notification verb).
CQ Doorbell record layout is shown in Table 69.
Table 69 - CQ Doorbell Record Layout
31(30(29|28|27(26(25|24(23(22|21({20|19|18[17|16|15[14|{13|12(11|{10|9 |8 |7 | 6|5 3121 0%
&
update_ci =
g .
Q arm Ci1
£ g - 2
B
Table 70 - CQ DoorBell Record Field Descriptions
Offset Bits Name Description Access
Oh 23:0 update ci Consumer counter of the last polled CQE

Mellanox Technologies

122

J

Table 70 - CQ DoorBell Record Field Descriptions

Offset Bits Name Description Access

04h 29:28 | cmd_sn Command Sequence Number.

This value should be ‘0 for the first DoorBell rung, and should be
increment on each first DoorBell rung after a completion event.
That is, cmd_sn = (num_of completion_event delivered + 1)% 4

24 cmd 1 - Request notification for next Solicited completion event.
arm_ci field should specify the CQ Consumer Counter at the time
of the DoorBell ring.

0 - Request notification for next Solicited or Unsolicited comple-
tion event. Counter field should specify the CQ Consumer Counter
at the time of the DoorBell ring.

23:0 arm_ci Consumer Counter for arming CQ as described in cmd.

7.12.3 Poll for Completion

7.12.3.1 CQE Ownership

CQE ownership is defined by Owner bit in the CQE. The value indicating SW ownership is
flipped every time CQ wraps around. The following pseudo code explains how to determine that
a CQE is in SW ownership:

ownership cqe_ownership(cqe) {
if (cqe.owner == ((consumer_value >> log2 cq size) & 1)) {
return SW ownership

b
else {

return HW ownership
b

When a CQ is created or resized, software needs to initialize the entire CQE buffer with owner
bit =Hardware.

7.12.3.2 Reporting Completions

While executing a poll for completion, software examines the Owner bit and checks that the
opcode field is different than Oxf. of the CQE entry pointed by consumer counter. If the Owner
entry value is SW, the CQE is valid, and software should consume the entry and increment Con-
sumer Counter in the CQ Doorbell Record. This operation must be repeated as long as the Owner
bit of the CQEs examined has the SW value. Pseudo-code for the Poll for Completion algorithm
is shown below:
If (cqge_ownership(CQE[Consumer_indx]) == SW)& (CQE,opcode != 0xF) {
new_CQE = consume_entry(); // Read entry from the queue
consumer_counter ++; // Increment consumer counter
update_DoorBell record(CQ,consumer_counter); / Update DoorBell record
return new_CQE;
}else {
return CQ_EMPTY;

}

Mellanox Technologies 123

J

7124

Note: After seeing that the CQE is in SW ownership, SW should do memory barrier and re-read the
CQE.

Note: For multiple CQE polling, it is allowed to update the DoorBell record only once when exiting
the algorithm.

Request Completion Notification

Subscription for this event is achieved by updating a DoorBell record and writing the appropriate
command to the CQ Doorbell Register (“UAR Page Format” on page 64). Users can request
events for Solicited event notification or Unsolicited event notification.

In this section:
* “Request notification for next completion” will be denoted by ARM NEXT

* “Request notification for next Solicited completion” will be denoted by ARM SOLIC-
ITED

The CQ can be armed by application software to generate an event upon completion of a Work
Request on the WQ mapped to the CQ. The Completion Event is generated by the CQ if a new
CQE arrives at the CQ and one of the following conditions is met:

1. ARM NEXT was executed on the CQ and completion has been generated on this CQ
2. ARM SOLICITED was executed on Send WQE which completed with the E bit set

Completion events are reported to an EQ by writing an EQE, and no further events are generated
before a new request for notification with a higher value of emd_sn is executed. The required
usage of cmd_sn is described in “CQ DoorBell Record” on page 122.

Whenever a Completion Notification is requested by the verbs consumer, software should decide
if it is going to ring the DoorBell. If the last rung cmd_sn is different than the cmd_sn to be rung,
then a DoorBell should be rung. Otherwise, if the two cmd_sn values are equal, then Table 71
applies.

Table 71 - ARM CQ DoorBell Ringing With Repeated cmd_sn

Command of Last Executed ARM

ARM_NEXT ARM_SOLICITED
= ARM_NEXT ring ring
s ; :
gl 2 do not ring ring
SIE ARM_SOLICITED
Ol

If new CQEs are posted to the CQ after the reporting of a completion event and these CQEs are
not yet consumed, then an event will be generated immediately after the request for notification
is executed.

Event generation and handling is controlled by the Event State machine. Its transitions are shown
in Figure 21.

Mellanox Technologies 124

J

7125

7.12.6

Figure 21: CQ Event Delivery State Machine

Arm_next

Arm_Sol

Mellanox HCAs keep track of the last index for which the user received an event. Using this
index, it is guaranteed that an event is generated immediately when a request completion notifi-
cation is performed and a CQE has already been reported.

In addition, HCA provides mechanism to moderate events generated by the CQ as detailed in
“Completion Event Moderation” on page 142.

Completion Queue Update Error

CQ updates can cause errors resulting from software bugs. In particular, a CQ overrun is checked
while posting a completion, and if encountered, the RQ/SQ is transferred to the appropriate error
state. Hardware will deliver the auxiliary information to the software in an EQE written to the
EQ.

CQ update (and error discovery) are not synchronized with WQE execution. Thus, a positive
acknowledgment can be sent to the remote request, and subsequently a CQ overrun (or other
error) may be detected. Hardware may not write the CQE as a result of the error, and the CQ will
be transitioned to an error state as well as the RQ/SQ that caused the CQ error. To avoid these
errors, software must ensure that the number of WQEs posted to a RQ/SQ does not exceed the
number of entries in the CQ associated with this RQ/SQ. When multiple RQs/SQs post comple-
tions into the same CQ, this check must be cumulative.

Resizing a CQ

This feature enables modifying CQ size or CQEs size, driver must not modify any other field in
CQC when performing this flow.

In order to resize the CQ or CQEs size, SW needs to allocate a new buffer for the CQ and pin it.
Then, by submitting a MODIFY CQ command with op_mod =1 (Resize cq).

Mellanox Technologies 125

J

In this command SW needs to:
1. Pass the physical pages - as it was done while opening the CQ.
2. Fill below fields in the CQ context:
a. log cq_size
b. page offset.
c. log page size
Resizing Cq is enabled just if resize cq en =1 in QUERY_HCA CAP command (see
Section 12.3.3, “QUERY_HCA CAP — Query Device Capabilities,” on page 194).

While processing the command, the hardware will report a special CQE called Resize Cq
(CQE.opcode = 5h) to the old CQ denoting that the resizing operation has been completed. Note
that this can be observed before or after the MODIFY CQ command completes. Therefore, it is
advised that the driver reserves room for one extra CQE when creating a resizeable CQ.

Once the special CQE has been observed, driver can unpin the old CQ buffer (regardless whether
this happens before or after the MODIFY CQ command completes).

When the MODIFY CQ command completes, HW will not attempt to access the old buffer,
Note that it can still contain valid CQEs; therefore, SW should still poll this buffer for CQEs until
reaching the special CQE that indicates to move to the new buffer.

Note that the MODIFY CQ command, used for resizing the CQ, cannot be nested; thus, it is not
possible to issue a new MODIFY CQ command, with the Resize CQ opcode modifier, to the
same CQ before the previous one is completed.

When moving to the new CQE buffer, the index where SW should start polling at is calculated
based on the consumer counter and the new CQ size. Thus, the software needs to take the log c-
q_size least significant bits of the consumer counter and use them to reference the first CQE in
the new buffer. The ownership bit is calculated similarly.

Figure 22 illustrates the resizing process.

Mellanox Technologies 126

J

()

New CQ buffer
allocated

Old CQ

New CQ

©

MODIFY_CQ
submitted

Figure 22: CQ Resize

Special CQE
posted

index

New CQEs reported
to new buffer
according to CQ

Old CQ

New CQ

MODIFY_CQ
completed

HCA resizes CQ

Old CQ

New CQ cQ

Old CQ buffer
de-allocated

It is recommended that when the MODIFY CQ command ends, or before starting any new resize
operation, to copy the CQEs from the old buffer to the new buffer. The process involves going
through the old buffer, look for the special CQE, and then copying all prior CQEs to the new CQ
omitting the special CQE. This simplifies accounting issues with the amount of CQEs that are
produced by this CQ (total of at most one extra CQE, the resize special CQE, at all times).

The process of arming the CQ is unaffected by the resizing operation since the consumer/pro-

ducer counters remain intact.

The format of the special resizing CQE is shown in Table 72.

Table 72 - Resize CQE Layout

31

30

29

28

27

26

25

24

23

22

20

timestamp _h

timestamp 1

Signature

Joumo

UD€ |UBE | U | U0E [UDT-UOO0 (3PSO

Mellanox Technologies

127

J

7.12.7 Completion With Error

Completions with error are reported to the CQ similarly to regular completions. In the case of
completion with error, not all the CQE fields are valid and some of the fields have different
meanings. For every WQE that completes in error, a completion with error is generated; “CQE
with error” is specified by 13 or 14 value in the opcode field.

The layout of a CQE with error entry is shown in Table 73.
Table 73 - Completion with Error CQE Layout

311302928 (27/26(25(24|23(22|21|20(19(18|17|16|15|14|13|12|11(10{9 |8 |7 |6 |5 |4 3|2 |1 0%
&
wqe_id 8
(=}
+
a
=N
=2
usr_index §
[N}
N
=
)
o0
(=2
byte cnt 5
(V84
(=}
=
vendor_error_syndrome Syndrome ;
S_WQE_OPCODE flow_tag %
o
wqe_counter Signature OPCODE § &
g |~
Field descriptions are shown in Table 74.
Table 74 - Completion with Error CQE Field Description
Offset | Bits Name Description Access
15:8 vendor_error_syn- Mellanox specific error syndrome. Undocumented.
drome For further information contact Mellanox technical support.
7:0 syndrome 0x1: Local Length Error
0x4: Local_Protection Error
0x5: Work Request Flushed Error
0x6: Memory Window_Bind Error
0x10: Bad Response Error
0x11: Local Access Error
0x12: Remote Invalid Request Error
0x13: Remote Access_Error
0x14: Remote Operation_Error
Once an RQ/SQ has transitioned to the Error state, subsequent WQEs posted to the RQ/SQ will
result in reporting a completion with error (flushed) to the associated CQ.
Mellanox Technologies 128

J

4 N

7.12.8 Completion Queue Context (CQC)

While opening a new CQ, software should create a CQ Context object and pass it to HW using
CREATE_CQ command.

The format of a CQC structure is shown in Table 75.
Table 75 - Completion Queue Context Layout

31(30(29(28(27|26(25|24|23|22|21|20|19 18|17 |16|15/14|13|12|11|10| 9 |8 |7 |6 |5|4 3|2 |1]|0

cqe sz

UQ UONEBISPOW Yealq abos

page offset

log_cq_size uar_page

cq_period cq_max_count

log_page size

last notified index

last_solicit_index

consumer_counter

producer_counter

=
=
(=
o0
=
(=]
Q
=
—_
S
=
—_
N
=
—
o0
=
—
Q
=
N}
S
=
N}
~
=
[\
o}
=
[\
Q
=
3
S
=
W
S
=
(953
o}
7
W
Q
=

\ Mellanox Technologies 129 J

Field descriptions are provided in Table 76.

Table 76 - Completion Queue Context Field Descriptions

Offset | Bits Name Description Access
00h 31:28 | status CQ status
0x0: OK
0x9: CQ_OVERFLOW
0xA: CQ WRITE_FAIL
Valid for the QUERY_CQ
23:21 | cqe sz CQE size
0: BYTES 64
1: BYTES 128
20 cc If set, all CQEs are written (collapsed) to first CQ entry
18 scqe_break - When set, solicited CQE (CQE.SE flag is enabled) breaks Completion Event
modera- Moderation. CQE causes immediate EQE generation.
tion_en Supported only if HCA CAP.scqe_break moderation==1.
For more info related to Completion moderation please refer to
Section 7.13.14, “Completion Event Moderation,” on
page 142
17 oi When set, overrun ignore is enabled.
When set, updates of CQ consumer counter (poll for completion) or Request
completion notifications (Arm CQ) DoorBells should not be rung on that
CQ.
16:15 | cq period - 0: upon_event - cq_period timer restarts upon event generation.
mode 1: upon_cqe - cq_period timer restarts upon completion generation. Sup-
ported only when HCA_ CAP.cq_period_start_from cqe==1.
14 cqe_compres- | When set, CQE compressing feature is enabled for that CQ.Must be zero
sion_en when cqe size is 128 byte (cqe_sz==1).
13:12 | mini_c- Mini Cqe responder format. valid only when cqe_compression==1.
ge_res_format | 0: Responder Mini CQE consists from: Byte Count and RX hash result.
1: Responder Mini CQE consists from: Byte Count and HW Checksum
value.
11:8 | st Event delivery state machine
0x6: SOLICITED_NOTIFICATION REQUEST ARMED
0x9: NOTIFICATION_REQUEST ARMED
0xA: FIRED
other: reserved
Valid for the QUERY_CQ command only.
Reserved for CREATE CQ.
08h 11:6 | page offset Must be 0
0Ch 28:24 | log_cq_size Log (base 2) of the CQ size (in entries).
Maximum CQ size is 22> CQEs (max log_cq_size is 22)
23:0 | uvar page UAR page this CQ can be accessed through (ringing CQ DoorBells)
Mellanox Technologies 130

J

Table 76 - Completion Queue Context Field Descriptions

Offset | Bits Name Description Access
10h 27:16 | cq period Event Generation moderation timer in 1 usec granularity, see See Sec-
tion 7.13.14, “Completion Event Moderation,” on page 142.
0 - CQ moderation disabled
15:0 | cq max- Event Generation Moderation counter, see See Section 7.13.14, “Comple-
_count tion Event Moderation,” on page 142.
0 - CQ moderation disabled
14h 7:0 c eqn EQ this CQ reports completion events to.
18h 28:24 | log_page size | Log (base 2) of page size in units of 4KByte
20h 23:0 | last noti- Last_notified_indx. Maintained by HW.
fied index Valid for QUERY _CQ command only.
This field is for debug only purpose and is subject to change.
24h 23:0 | last_solic- Solicit_producer_indx. Maintained by HW.
it_index Valid for QUERY _CQ command only.
This field is for debug only purpose and is subject to change.
28h 23:0 | consum- Consumer counter. The counter is incremented for each CQE polled from the
er_counter CQ.
Must be 0x0 in CQ initialization.
Indicates last consumer counter seen by HW (valid for the QUERY_CQ
command only).
2Ch 23:0 | produc- Producer Counter. The counter is incremented for each CQE that is written
er_counter by the HW to the CQ.
CQ overrun is reported if Producer_counter + 1 equals to Consumer_counter
and a CQE needs to be added.
Maintained by HW (valid for the QUERY _CQ command only)
38h- 64 dbr_addr CQ DB Record physical address
3Ch

7.12.9 CQ to EQ Remapping

The device supports a dynamic change of the EQ to which CQ reports Completion Events. This
can be done via MODIFY CQ command (See Section 12.7.4, “MODIFY_CQ — Modify CQ
Parameters,” on page 244). After successful completion of the command which remaps the EQ,

the SW must call or schedule a procedure which polls the modified CQ.

7.12.10 CQE Timestamping

Each Generated CQE includes a 64 bit timestamp. This field holds a sample of the device inter-
nal timer taken when the CQE was generated. The timestamp can be used by the application to

monitor execution time of 1/0 operations.

Note: CQEs for LRO operations coalescing TCP packets with the Timestamp Option do not carry the
internal timer timestamp. This is indicated by the lro_timestamp_is_valid field in Cqe Format. See
Table 67, “64B Completion Queue Entry Format Layout,” on page 117.

Mellanox Technologies

J

-

7.12.10.1 Conversion to Real Time

The CQE timestamp represents an internal timer using device specific frequency. To translate the
timestamp into real time, the ratio is given in HCA_CAP.device_frequency field (See Table 144,
“HCA Capabilities Layout,” on page 196). The timestamp should be divided by the frequency to
produce a value in micro-seconds.

7.12.10.2 Synchronization with Current Time

713

7131

Presenting the actual time of CQE generation requires a reference point in time, synchronizing
the wall-clock with the current device-clock. The current value of the device internal timer can be
queried using a PCI read of the Init_segment.internal_timer_h and Init_segment.internal_tim-
er_l fields (See Table 7, “Initialization Segment,” on page 48).

Note: Reading the internal timer using 2 PCI reads in a non-atomic manner may hit the wraparound
of the 32 LSBs of the timer, making the MSBs and LSBs incompatible. Reading the 32 MSBs twice

(before and after reading the LSBs) can verify a wraparound did not happen.

Events and Interrupts

HCA has multiple sources that can generate events (completion events, asynchronous events/
errors). Once an event is generated internally, it can be reported to the host software via the Event
Queue mechanism. The EQ is a memory-resident circular buffer used by hardware to write event
cause information for consumption by the host software. Once event reporting is enabled, event
cause information is written by hardware to the EQ when the event occurs. If EQ is armed, HW
will subsequently generate an interrupt on the device interface (send MSI-X message or assert
the pin) as configured in the EQ.

Each one of the HCA EQs can be associated with a different event handler on the host. Each
Event Group can be configured to report events to one of the EQs, implementing hardware de-
multiplexing of the events to different event handlers. In particular, completion reports can be
reported to different EQs, based on the CQ that reports the event.

In virtual environment EQs can be exported to the guest VM, and kernel driver in Guest VM will
control the EQ. HCA HW enforces protection and isolation between EQs.

Event Queues
The EQ is an object containing the following entities:

1. Event Queue Context (EQC) — The data structure describing the EQ properties that is
passed to the device by SW while creating the EQ. The number of EQs supported by the hard-
ware can be queried through the QUERY HCA CAP command (log max_eq). The actual
number of the EQs to be used by software (power of two) is configured at HCA initialization.
EQC contains various parameters of the EQ. For more details see “Event Queue Context
(EQC)” on page 139

2. Event Queue — A virtually-contiguous circular buffer accessible by system software and used
by hardware to post event records - Event Queue Entries (EQEs). The maximum supported
EQ size is retrieved by the QUERY HCA_CAP command (log max_eq sz). EQE size is 64

bytes.
3. DoorBell Register associated with the EQ (see “UAR Page Format” on page 64).

Mellanox Technologies 132

J

-

7.13.2 Event Queue Buffer

An EQ is a virtually-contiguous memory buffer used by HCA to post event reports to and used
by application software to poll events reports from. This buffer is allocated by the host software
at EQ creation and its physical address is passed to the HCA. The memory associated with this
buffer is passed to the HCA as a list of physical pages. EQ buffer must be aligned on EQE-size a

boundaryl. EQ is shown in Figure 23.

Figure 23: Event Queue Buffer

A
Page_offset

Page

Event Queue

Memory Registered
Event Queue Buffer

Hardware posts event records (writing EQEs) to the EQ. Upon EQEs consumptions, SW updates
the EQ Doorbell register specifying the Consumer Index and change state of the EQ (for example
arm it to generate interrupt on next event posted).

EQ is a virtually-contiguous circular buffer accessible by the HCA hardware and contains EQEs.
The buffer is managed by Producer Counter and Consumer Counter same as CQ is managed.

Upon polling the EQ successfully (that is, a new EQE is found), software updates the Consumer
Counter which is used by hardware to monitor a potential EQ overflow.

7.13.2.1 EQE Ownership

EQE ownership is defined by Owner bit in the EQE. This bit follows the logic of the Owner bit
in the CQE, for details refer to “CQE Ownership” on page 123.

1.

If CPU cache size is larger than EQE-size, for best performance EQ buffer should be aligned on CPU cache line size and size of EQ buffer
should be at least one CPU cache line.

Mellanox Technologies 133

J

-

7.13.2.2 EQE Format

Each EQE contains enough information to associate the EQE with its CQE. The EQE layout is
shown in Table 77.

Table 77 - Event Queue Entry Layout

31(30(29(28(27|26(25|24(23|22(21({20(19|18|17|16|15|14 1312|1110/ 9 |8 |7 |6 |54 (3|2 |1 0%
&

event_type event_sub_type §
(=]

S

7

o

=

event_data L.‘C\;

(95}

(o]

=

signature % e

g |2

EQE field descriptions are shown in Table 78.

Table 78 - Event Queue Entry Field Descriptions

Offset | Bits Name Description Access
00h 23:16 | event type Event Type
7:0 event_sub_type | Event Sub Type.
Defined for events which have sub types, zero elsewhere.
20h- 224 event data Delivers auxiliary data to handle the event.
38h
3Ch 15:8 | signature Byte-wise XOR of EQE - signature protection (see See Section 9.2.4,
“Completion and Event Queue Elements (CQEs and EQEs),” on
page 156). EQE is valid if byte-wise XOR of entire EQE (including sig-
nature field) and the EQE index is 0xff.
0 owner Owner of the entry
While draining (consuming) the EQ, software should execute the following algorithm:
While (EQ[Consumer_indx].Owner == SW) {
consume_entry(); // remove entry from the queue
Consumer_counter++;
H
subscribe for event(EQ); // subscribe for event for next time
7.13.2.3 EQ DoorBell Register
EQ DoorBell register is mapped to one of the UAR (DoorBell) page. Refer to “UAR Page For-
mat” on page 64 for details.
Mellanox Technologies 134

J

7.13.3

7.13.4

7.13.5

7.13.6

Completion Events

HCA implements CQs which are described in detail in “Software Interface” on page 62. While
creating a CQ, software configures the EQ number to which this CQ will report completion
events.

Further description of completion events and requests for completion events notification is pro-
vided in “Request Completion Notification” on page 124.

Polling on EQEs

Some applications may use EQs without generating interrupts. This is useful when the interrupt
rate is too high and polling makes sense to reduce the CPU load. In this case, the EQ should be
created in fired state and never be armed. Further on, an EQ will be managed by polling the EQ
and updating the EQ consumer index using DoorBells (see “UAR Page Format” on page 64).

Sharing MSI-X/Interrupt Amongst EQs

There are cases where more than one EQ report to the same MSI-X vector or to an interrupt pin.
In such cases, when servicing an interrupt, the device driver should arm all the EQs that report to
the same MSI-X vector/Interrupt pin.

Event Queue Mapping

Each event type can be mapped to an EQ. Mapping and unmapping events to/from EQs is per-
formed through the command interface (see “Command Reference” on page 185). Mapping com-
pletion events to EQs is performed separately for each CQ through the command interface (see
“Command Reference” on page 185).

The encoding for event type fields is shown in Table 79, “Event Type and Coding”

Table 79 - Event Type and Coding

. At Event
Family Event Description Type EQE Format
Completion Completion_Events 0x0 See Section 7.13.7, “Completion Events,” on page 136
Events
Last WQE_Reached 0x13 See Section 7.13.8.1, “SQ/RQ Events,” on page 136
RQ/SQ Affili- | CQ_Error 0x04 See Section 7.13.8.2, “Completion Queue Error Event,”
ated on page 137
Asynchro-
nous Errors
Unaffiliated Internal Error 0x08 None.
Asynchro- See Section 7.13.9.1, “Internal Errors,” on page 137.
nous Events
and Errors Port_State Change 0x09 See Section 7.13.9.2, “Port State Change Event,” on
page 138
Temp Warning Event 0x17

Mellanox Technologies 135

Table 79 - Event Type and Coding

page 139

Family Event Description Event EQE Format
Type
HCA Inter- Command _Interface Comple- 0x0A See Section 7.13.10.1, “Command Interface Completion
face tion Event,” on page 138
Page Request 0x0B See Section 7.13.10.2, “Pages Request Event,” on

The Event_Data field written to the EQ is defined in the following sections.

7.13.7 Completion Events

EQE event data is used for reporting completion events. Its layout is shown in Table 80.
Table 80 - Event_data Field - Completion Event Layout

31130(29(28(27|26(25(24|23(22(21|20(19[18|17|16|15|14|13 1211|109 (8 |7 |6 |5 |4 2|1 0%
&
(=)
S
=
=
=
CQ number o:g
Table 81 - Event_data Field - Completion Event Field Descriptions
Offset | Bits Name Description Access
18h 23:0 | CQ number
7.13.8 Asynchronous Events and Errors
7.13.8.1 SQ/RQ Events
The EQE event data format shown in Table 82 on page 136 is used for the following SQ/RQ
related events:
¢ Last WQE Reached Event
Table 82 - Event_data Field - SQ/RQ Events Layout
31(30(29(28(27(26|25|24(23|22|21(20(19|18|17|16|15|14|13|12|11|10|9 (8 |7 |6 |5 | 4 21 0%
&
S
=
=
type 5
rqn/sqn o:g
Mellanox Technologies 136

J

Table 83 - Event_data Field - SQ/RQ Events Field Descriptions

Offset | Bits Name Description Access
14h 31:24 | type Queue type
1: RQ
2: SQ
18h 23:0 | rgn/sqn Indicates SQN or RQN depending on type field.
7.13.8.2 Completion Queue Error Event
The following EQE event data format is used for reporting CQ related errors.
Table 84 - Event_data Field - Completion Queue Error Event Layout
31130(29(28(27|26(25(24|23(22(21|20(19[18|17|16(15|14|13 1211|109 (8 |7 |6 |5 |4 21110

syndrome

U8 1-4O0 [Y80 | U0 | HOO 3°SPHO

Table 85 - Event_data Field - Completion Queue Error Event Field Descriptions

Offset | Bits Name Description Access
00h 23:0 | cqn CQ number event is reported for
08h 7:0 syndrome 0x1: CQ_overrun
0x2: CQ _access_violation_error

7.13.9 Unaffiliated Events and Errors

7.13.9.1 Internal Errors

Internal Errors are reported to a buffer in the HCA address space. An EQE is not generated in the
case of an internal error. The device driver can either periodically poll on the buffer or register to
receive an interrupt in case of an internal error.

Internal error buffer is located on the initialization segment of the HCA BAR. Interrupt can be
generated regardless whether the EQ is armed. Under certain conditions, an interrupt will not be
generated; it is therefore recommended to periodically poll on the Internal Error buffer.

When an error is reported, the Internal Error buffer will cause a non zero value to appear in the
first DWORD of the buffer. When software detects an error indication, that is, a valid buffer, it
should log the entire buffer for debug purposes.

Mellanox Technologies

137

J

Internal errors can be either reported by the device or detected by the device driver. Errors
detected by the device can be for example: unrecognized EQE, bus error when reading from
device configuration space, etc. When an error is detected, hardware reset should be performed.

7.13.9.2 Port State Change Event

The following EQE event data format is used for reporting port state change.
Table 86 - Event_data Field - Port State Change Event Layout

31130(29(28(27|26|25|24|23|22|21(20(19|18|17|16|15|14|13|12|11(10|9 |8 |7 |6 (5|43 |2|1|0

port num

U8 1-4D0 [480 | U¥0-H0O0 [3°sHO

Table 87 - Event_data Field - Port State Change Event Field Descriptions

Offset | Bits Name Description Access

08h 31:28 | port_num Port number

The event subtype denotes whether the port new state is up or down, as shown in Table 88.

Table 88 - Port State Change Event Subtype

Subtype .
Encoding Event Subtype Description
0x1 port state changed port changed its state.
0x4
0x5

7.13.10 HCA Interface Events

7.13.10.1 Command Interface Completion Event

Table 89 provides the EQE event data format used for reporting command completion. HCR
(HCA Command Register) fields which are included in the EQE are explained in detail in “Com-
mand Interface” on page 144.

Table 89 - Event_data Field - Command interface Completion Event Layout

31130(29(28(27|26|25|24|23|22|21(20(19|18|17|16|15|14|13|12|11(10|/9 |8 |7 |6 (5|43 |2|1|0

command_completion_vector

U81-¥0 | 400 |3°sPFO

Mellanox Technologies 138 J

Table 90 - Event_data Field - Command Interface Completion Event Field Descriptions

Offset

Bits

Name

Description

Access

00h

31:0

command_comple-
tion_vector

Bits in this vector are set for commands completed and not yet

reported by event

7.13.10.2 Pages Request Event

This event is used to inform the driver that the device needs to add / release pages for one of its
functions. In response to such an event, the driver will post a MANAGE PAGES command.
MANAGE PAGES is executed once, per event, in response to Page Request Event. This com-
mand also acts as arming the Page Request Event. This implies that once Page Request Event is
generated, it will not be generated again before the driver executes the MANAGE PAGES com-

mand.

Table 91 - Pages Request Event Layout

3130|2928 (27(26(25(24|23|22|21|20(19(18|17|16|15|14|13/12|11(10{9 |8 |7 |6 |5 | 4 2|1 0%
&

(=)

(=]

=

R

num_pages &
S

(o]

7

0

=

Table 92 - Pages Request Event Field Descriptions

Offset

Bits Name

Description

04h

31:0 num_pages

command.

Number of missing / unneeded pages (signed number, msb indicate sign).
This is just a recommendation for the driver. the actual number of pages
that the driver deliver to the device is as set in the MANAGE PAGES

7.13.11 Event Queue Context (EQC)
The number of EQs supported by the HCA can be retrieved by QUERY HCA_ CAP command.

Note: EQ enumeration is per function in a multi-function device. Each one of the functions owns
EQs numbered from 0x0. When an EQ is accessed, it is identified by both EQ number.

SW can create new EQE using the CREATE _EQE command. The format of the EQ Context is
shown in Table 93.

Table 93 - Event Queue Context Layout

31130(29(28(27|26(25(24|23(22/21|20(19|18|17|16|15|14|13 1211|109 (8 |7 |6 |5 |4 2|1 0%
&
status g |e. st §
()
=
=
S
page_offset 2
Mellanox Technologies 139

J

Table 93 - Event Queue Context Layout (Continued)

311302928 (27(26(25(24(23|22|21|20(19(18|17|16|15|14|13|12/11|10{9 |8 |7 | 6 413121 0%
&
log_eq_size uar_page (5_
=
=
intr 5
log page size o:g
o
=
(S
~
=
[\
consumer_counter ®
[\
producer_counter Q
W
S
=
()
Q
=
EQC fields are shown in Table 94.
Table 94 - Event Queue Context Field Descriptions
Offset | Bits Name Description Access
00h 31:28 | status EQ status
0x0: OK
0xA: EQ_WRITE_FAILURE
Valid for the QUERY EQ command only
18 ec Is set, all EQEs are written (collapsed) to first EQ entry
17 oi When set, overrun ignore is enabled.
11:8 | st Event delivery state machine
0x9: ARMED
0xA: FIRED
other: reserved
Reserved for CREATE EQ.
08h 11:6 | page off- | Mustbe O
set
0Ch 28:24 | log eq - Log (base 2) of the EQ size (in entries).
size
23:0 | uvar_page UAR page this EQ can be accessed through (ringing EQ DoorBells)
14h 7:0 intr MSI-X table entry index to be used to signal interrupts on this EQ.
Reserved if MSI-X is not enabled in the PCI configuration header.
18h 28:24 | log page | Log (base 2) of page size in units of 4KByte

size

Mellanox Technologies 140

J

Table 94 - Event Queue Context Field Descriptions (Continued)

Indicates last consumer counter seen by HW (valid for the QUERY_EQ
command only).

Offset | Bits Name Description Access
28h 23:0 | consum- Consumer counter. The counter is incremented for each EQE polled from the
er _counte | EQ.
r Must be 0x0 in EQ initialization.

2Ch 23:0 | produc- Producer Counter. The counter is incremented for each EQE that is written
er_counte | by the HW to the EQ.
r EQ overrun is reported if Producer_counter + 1 equals to Consumer counter

and a EQE needs to be added.
Maintained by HW (valid for the QUERY EQ command only)
Should be 0x0 in EQ initialization.

7.13.12 Hardware Interrupts

Reporting an event to the EQ can be accompanied by the generation of a hardware interrupt (gen-
erating an interrupt message on the host interface bus). Each EQ can be independently configured
to assert one of the interrupt pins or generate one of the Interrupt Messages (MSI-X) on the host
interface bus.

A hardware interrupt is generated if the EQ has been armed by Interrupt Handling software.
While EQ is in Armed state, when an event is generated, hardware disarms the EQ and no addi-
tional interrupts are generated until the EQ is re-armed. The EQ state machine and state transi-
tions are shown in Figure 24,“EQ State Machine”.

Figure 24: EQ State Machine

EQ DoorBell: ARM_EQ

HW interrupt generated

CREATE EQ

(Initialization)

Arming an EQ to trigger an interrupt is done by writing an EQ ARM DoorBell. Refer to “UAR
Page Format” on page 64.

MSI-X is generated only if the MSI-X enable bit is set in the appropriate PCI configuration regis-
ter of the device. According to the PCI specification, when MSI-X is enabled, a device is prohib-
ited from using the INTA# pin. Therefore, EQs must be configured in accordance with the MSI-
X enable bit in PCI configuration space to avoid a conflict with the PCI specification. When a
device is reconfigured to a different interrupt scheme (from MSI-X to INTA# or vice versa), the
EQs should be torn down and re-established with the new configuration.

7.13.13 Interrupt Moderation

The HCA supports hierarchical event delivery scheme. The completion of Work Request on WQ
is reported to CQ. Multiple WQs can report completions to the same CQ. CQ that is armed to

Mellanox Technologies 141

J

generate event upon Work Request completion posts event to one of the EQs. Multiple CQs can
report an event to same EQ. An EQ that is armed to generate interrupt upon Event report, gener-
ates interrupt by the mean configured (for example specific MSI-X message, certain pin assertion
etc.). Multiple EQs can generate interrupts by the same mean (for example by generating same
MSI-X message or asserting same pin).

Under high load of network traffic, it is highly desirable to moderate event reporting, hereby
enabling the SW to handle multiple events upon each entry to the event handler.

HCA deploys a two-stage moderation scheme:

1. Completion Event Moderation - CQs can be configured to hold off event generation (post-
ing event report to the EQ) until certain threshold of completions are reported to that CQ (or a
timeout is reached) while it is armed. Each CQ can be independently configured to operate in
this mode.

2. Interrupt Frequency Moderation - Frequency of Interrupts’ generation can be trimmed to
certain limit. Each mean of Interrupt Generation can be independently configured to trim
interrupts’ frequency. Each MSI-X message can be independently configured to operate in
this mode.

7.13.14 Completion Event Moderation

Completion Event Moderation (CEM) delays posting of Completion Event by armed CQ until
multiple completions are reported on that queue. This enables to amortize overhead of comple-
tion event handler call across multiple work completions.

CEM can be enabled for each CQ individually.
An armed CQ will generate an event when either one of the following conditions is met:

* The cq_period timer has expired and there is a pending event for this CQ (an event that
would have otherwise been generated if it would not be subject to moderation).The
cq_period timer restarts either upon event generation or upon completion generation,
depending on the CQ.cq period mode (See Table 75, “Completion Queue Context
Layout,” on page 129).

* The number of completions generated since the one which triggered the last event gen-
eration reached cq_max_count.

Both cq_max_count and cq_period parameters are configured in CQ that is subject to CEM.

Figure 25 illustrates event generation from CQ configured to report event after 4 completions
have been posted (left) or after timeout since the last completion report expired (right).

Mellanox Technologies 142 J

Figure 25: Completion Event Moderation

Software
IR I 1]
Event
Queues
A
o} e e}
o o 1)
e . € -
 TMEEE < @A
12112} |2] 12112
Completion 13| (3] 3] &
Queues 4]
_____ v _ — Y _ _ S A
w w w w w w w
[¢] [¢] [¢] [¢] g g [¢]
Hardware (HCA) © o ° ° © ° °
- CQE_period

\j

Time

y

CQ is transferred to fired state after event has been reported.

CEM is expected to be deployed on CQs that consolidate completion reports from multiple inde-
pendent and concurrently-operating WQs.

For CQs with CQ.scqe_break moderation_en==1, solicited CQE (CQE.SE flag is enabled)
breaks moderation and generates an immediate EQE.

Note that this feature is supported if HCA CAP.scqe break moderation is enabled.

7.13.15 Interrupt Frequency Moderation

Interrupt Frequency Moderation (IFM) trims the frequency of interrupt assertion on the chip
interface.

IFM is implemented on each interrupt (pin or message) and it assures that this interrupt is not
asserted at a rate higher than one configured. Each interrupt message/pin can be independently
configured to trim interrupt frequency; this property is configured in Interrupt Context Table.
After interrupt request is generated on IFM-enabled interrupt, HW checks the value of interrupt-
associated timer. If this timer value is zero, interrupt is generated on the chip interface, timer is
re-loaded with int_period field of the respective entry in Interrupt Context Table and timer starts
count-down. If timer value was not zero when interrupt request was generated, the interrupt gen-
eration on the chip interface will be delayed until timer is expired. Every time interrupt is fired
(generated) on chip interface, the timer is re-loaded and starts count-down.

This mechanism assures that interrupts are not generated more frequently than int period time
ticks apart. However, if interrupt has not been generated for a long time, the interrupt request will
result in immediate generation of interrupt on chip interface. Figure 26 illustrates [FM mecha-
nism.

Mellanox Technologies 143 J

2k A A
Software £ = =
S kS kS
INT_period _, INT_period INT_period
& & o g Time
Hardware (HCA) & £ £ £ s
Z Z Z Z Z

714

7141

Figure 26: Interrupt Frequency Moderation

Interrupt Frequency Moderation can always be deployed to assure that interrupts are not gener-
ated by the HCA at excessive rate. Interrupt moderation is configured through the CON-
FIG_INT MODERATION command.

Command Interface

The HCA command interface is used for:

* configuring the HCA

» the handshake between hardware and system software

* handling (querying, configuring, modifying) HCA objects

The HCA is configured using the command queues. Each function has its own command queues
to get commands from its HCA driver. A detailed reference for the syntax of the command inter-
face commands is provided in Chapter 12, “Command Reference” (page 185).

HCA Command Queue

The command queue is the transport that is used to pass commands to the HCA.

The command queue is a buffer on fixed-size entries. Each entry can contain one command
queue entry. The number of entries and the entry stride can be retrieved from the initialization
segment of the HCA Bar. See Table 7, "Initialization Segment".

The command queue resides in physically contiguous 4KB memory chunk aligned on its size.
The physical address of this memory chunk is configured by SW to the initialization segment.

The command queue is a directional way to send commands. SW will put a command request in
it and will receive a command response. When posting an entry to the command queue, SW will
ring the command DoorBell vector in the initialization segment by writing to this vector with the
respective (to the newly posted command) bit set. If EQ is set and mapped to this command
queue, SW will be informed on command completion by EQE.

SW can execute a single write to the DoorBell vector for multiple commands by setting multiple
bits in the DoorBell vector.

Hardware Function may execute and complete the commands in an out-of-order manner. Once a
command is completed, the ownership bit of the command is updated and the event is generated.

Mellanox Technologies 144

J

It is SW’s responsibility to ensure successful generation of this event. Consequently, if no room
is left in EQ buffer, the command should not be sent until the EQ consumer index has been
updated (using EQ doorbell).

The event data includes the command completion vector. Bits in this vector are set for commands
completed after the former event.

As an alternative to waiting for events, SW can poll the ownership bit in the command to under-
stand when the command is completed.

Before EQ was generated, SW cannot wait for events to understand the status of commands.
Once EQ is created and mapped, as well as mapped for command completion events on the com-
mand queue, SW can wait for events.

Note that the CREATE EQ command that maps EQ to the command queue must be posted to the
command queue while it is empty and no other command should be posted.

Table 95, “Command Queue Entry Layout,” on page 145 shows the layout of the command.
Note that status bit and all reserved fields should be set to zero by SW when posting the com-
mand.

When a command request is carried by a command queue entry, the first 16 bytes of the com-
mand reside as inline data in the command_input_inline data field. The rest of the command will
be in the input mailbox. For the command response, the first 16 bytes will reside in the com-
mand output inline data. The rest of the command response will be in the output mailbox.
Table 95 - Command Queue Entry Layout

31130(29(28(27|26(|25|24(23|22(21(20(19|18|17|16|15|14|13|12(11|/10|/9 |8 |7 |6 |5 |4 |3 |2 0%
v
[¢]
(=)
type S
input_length §
input mailbox pointer[63:32] oocg
input mailbox pointer[31:9] 3
command_input inline data §_
o
=
command_output_inline_data l§_
Y
Q
=
output mailbox pointer[63:32] §
output mailbox pointer[31:9] §
W
output_length ®
token signature status

digszoumo

Lio]3

Mellanox Technologies 145

J

Table 96 - Command Queue Entry Field Descriptions

Offset | Bits Name Description Access
00h 31:24 | type Type of transport that carries the command
0x7: PCle_cmd if transport
04h 31:0 | input_length Input command length in bytes
08h 31:0 | input mail- Pointer to input mailbox
box
pointer[63:32
]
0Ch 31:9 | input mail-
box
pointer[31:9]
10h- 128 command_in- | The first 16 bytes of the command input
1Ch put_inline -
data
20h- 128 com- The first 16 bytes of the command output
2Ch mand_out-
put_inline da
ta
30h 31:0 | output mail- Pointer to output mailbox
box
pointer[63:32
]
34h 31:9 | output mail-
box
pointer[31:9]
38h 31:0 | output length | Output command length in bytes
Mellanox Technologies 146

J

Table 96 - Command Queue Entry Field Descriptions (Continued)

to move ownership bit to SW.

Offset | Bits Name Description Access
3Ch 31:24 | token Token of the command. Should have the same value in the command and
the mailbox blocks.
23:16 | signature 8 bit signature of the command queue entry, Does not include the mail-
box.
7:1 status Command delivery status
0x0 - no errors
0x1 - signature error
0x2 - token error
0x3 - bad block number
0x4 - bad output pointer. pointer not aligned to mailbox size
0x5 - bad input pointer. pointer not aligned to mailbox size
0x6 - internal error
0x7 - input len error. input length less than 0x8
0x8 - output len error. output length less than 0x8
0x9 - reserved not zero
0x10 - bad command type
SW should set this field to 0 when posting the command.
0 ownership SW should set to 1 when posting the command. HW will change to zero

For commands posting, notification on completion, and events generation see Section 11.1, “Ini-
tialization,” on page 365.

7.14.1.1 Mailbox Format

Input and output mailboxes are shown in Table 97, “Command Interface Mailbox Layout,” on
page 147. If the mailbox data is larger than the size of the mailbox-data field, the first part of the
data will be in the first mailbox block, the second part in the second block etc.

Table 97 - Command Interface Mailbox Layout

3130

29

28 (27

26 25|24

23

22

21(20(19|18|17|16|15/14|13|12|11|/10| 9 |8 |7 |6 |5 | 4

mailbox data

next_pointer[63:32]

next_pointer[31:10]

block number

token ctrl_signature

signature

UDET| UBET |UPET|UOET|UDTT-U00T |UDAT-U00 [I°SHO

Mellanox Technologies

147

Table 98 - Command Interface Mailbox Field Descriptions

Oftfse Bits Name Description Access
00h- 4096 | mailbox data Data in the mailbox
1FCh

230h 31:0 | next pointer[63:32] | Pointer to the next mailbox page (if needed). If no additional block is
needed, the pointer should be 0.

234h | 31:10 | next pointer[31:10] | Pointer to the next mailbox page (if needed). If no additional block is
needed, the pointer should be 0.

238h 31:0 | block number Sequence number of the block. Starting by 0 and increment for each
block on the linked list of blocks.

23Ch | 23:16 | token Token of the command. Should have the same value in the command
and the mailbox blocks.

15:8 | ctrl_signature Signature dwords 1D0Oh-1FCh result of bytewise XOR of all those
DWORD:s including the ctrl_signature should result in OxFF (while
the signature byte is considered as 0).

7:0 signature Signature of the current mailbox page. bvtewise XOR of all bytes of
the page, including the reserved fields and the signature fields should
result in OxFF.

7.14.1.1.1Calculating Mailbox Signatures

Mailbox signatures are calculated for each mailbox block independently. Calculation is done in
the following way:

L]

update all fields of the mailbox block with their values
write ‘0’ to the ctrl_signature and the signature fields
calculate bytewise-xor of the ctrl part (bytes 1COh - 1FFh)
invert the result and write it to the ctrl_signature field
re-calculate bytewise-xor of the whole mailbox block
invert the result and write it to the signature field

before posting of command, the signatures of the command queue entry and the input
mailbox should be calculated. In addition, the ctrl signature of the output mailbox
blocks should be calculated. This is to protect the output mailbox pointers and token
fields.

7.14.1.2 Command Data Layout

The layout of the input command is shown in Table 99, “Command Input Data Layout,” on
page 149.

Mellanox Technologies 148

J

Table 99 - Command Input Data Layout

3131212(2(2(2[2]2 200 1| L1 L) L)L 1|98 7[6]5(4]32]1|0|
110[9(8[7]|6]|5]|4]|3 0 5| 4 1 =3
(o]
opcode =
=
op_mod 2
=
command[0] S
=
command[1] S
=
Table 100 - Command Input Data Field Descriptions
Oftfse Bits Name Description Access
00h 31:16 | opcode
04h 15:0 | op_mod Opcode modifier, if there is no description, then op_mod must be 0.
08h- 31:0 | command]...]

The layout of the output command is shown in Table 101, “Command Output Data Layout,” on

page 149.
Table 101 - Command Output Data Layout
3131212(2(2(2[2]2 200 1| L1 L)Ly Lf 1|98 7[6]54]3[2|1|0]|
11098 7]|6]|5]|4]|3 098765 0 =
[¢]
status =
=
syndrome S
B
=
command output S
=
Table 102 - Command Output Data Field Descriptions
Oftfse Bits Name Description Access
00h 31:24 | status
04h 31:0 | syndrome Syndrome on the command. Valid only if status = 0x0.
08h 31:0 | command output Command output. Valid only if status = 0x0.
Mellanox Technologies 149

J

8.1

8.1.1

8.1.2

Initialization and Teardown

Initialization
Adapter initialization is performed in the following three stages:

1. Device boot from attached NVMEM (Flash) — see “Stage 1 - Device Boot From Attached
NVMEM?” on page 150.

2. PCI device initialization is performed via boot software enumeration. In this stage the device
is discovered by the PCI enumeration software, and its memory BAR registers are pro-
grammed to enable the CPU access to the adapter’s configuration space. The device may
include multiple functions. See “Stage 2 - PCI Device Initialization via Boot Software Enu-
meration” on page 150.

3. Embedded switch or Physical port initialization.

4. Drivers initialization on each of the functions — see “HCA Driver Start-up” on page 151.

Stage 1 - Device Boot From Attached NVMEM

After the HW reset signal is de-asserted, the device boots by reading the firmware image (config-
uration) from the attached Flash device. Each sector of the Flash is CRC-protected, and the
device validates the signature of the sector read. If signature validation fails, the device initializes
itself as a “Flash programming device”. Thus, once the host boots, the firmware image can be
downloaded to the attached Flash device.

Once the firmware image has been loaded to the device’s internal memory and component initial-
ization has completed, the device is ready to respond to PCI enumeration. Prior to this condition,
the device responds with the ‘configuration retry status’ completion status to typeO configuration
cycles targeting the device.

Stage 2 - PCI Device Initialization via Boot Software Enumeration

In this stage, the adapter device responds to configuration cycles allowing PCI enumeration soft-
ware to discover the device. The device may contain multiple functions. Those functions may be
Physical Functions (PFs) or Virtual Functions (VFs). Each function has a single BAR on the PCI
address space.

The device can support the following PCI capabilities. The actual capabilities supported can be
retrieved from the PCI configuration header. For more details, see the PCI Express Base Specifi-
cations.

* pcie
* msix
e sriov
e ari

* power management
* vpd
¢ serial number

* advanced error reporting

Mellanox Technologies 150

J

After PCI fabric initialization is completed (for example, BAR registers assigned), the HCA
driver initializes and configures the device as described below.

Note: The driver should ensure that the Bus Master bit in the Command Register is set in the PCI
configuration header of the HCA prior to executing further commands on the command interface.

HCA Driver Start-up

After PCI Express fabric enumeration is completed and software has assigned PCI memory
space, the HCA is assigned with a single bar called “HCA BAR?”, device bring-up can start. The
device is initialized by executing the following sequence.

* Read the initialization segment from offset 0 of the HCA BAR, to retrieve the versions
of the firmware and the command interface. The driver must match the command inter-
face revision number. The format of the initialization segment is in Table 7, “Initializa-
tion Segment,” on page 48

* Write the physical location of the command queues to the initialization segment. If
using 32-bit writes, write the most significant word first. The nic_interface field is part
of the least significant word and must be set to zero (Full NIC/HCA driver), as are the
log cmdq _size and log _cmdq_stride fields.

* Read the initializing field from the initialization segment. Repeat until it is cleared
(INIT_SEGMENT.initializing become 0).

* Execute ENABLE HCA command.

* Execute QUERY ISSI command. See “ISSI - Interface Step Sequence ID” on page 62.
e Execute SET ISSI command.

* Execute QUERY PAGES to understand the HCA need for boot pages.

* Execute MANAGE PAGES to provide the HCA with all required boot pages, The
driver is allowed to give the sum of boot pages and num_init_pages.

* Execute QUERY HCA _CAP to retrieve the device capabilities limits.
* Execute SET HCA_ CAP to modify system capabilities.

* Execute QUERY PAGES to understand the HCA need for initial pages for executing
commands. If init_pages is 0, no need to do the MANAGE_ PAGES stage.

* Execute MANAGE PAGES to provide the HCA with all require init-pages. This can be
done by multiple MANAGE PAGES commands.

* Execute INIT_HCA command to initialize the HCA.

* Execute SET DRIVER VERSION command (only in case HCA CAP.driver ver-
sion==1). See Section 12.3.12, “SET_DRIVER VERSION,” on page 218.

* Execute the “CREATE EQ — Create EQ” on page 234 command to create EQ. Map
PAGE REQUEST event to it.

* Execute QUERY_ VPORT STATE command to get vport state.

* For Ethernet, execute QUERY VPORT CONTEXT command to get permanent MAC
address. (See Section 14.1.7, “Virtual NIC Start-Up,” on page 409).

e Execute MODIFY VPORT CONTEXT command to set current MAC address. (See
Section 14.1.7, “Virtual NIC Start-Up,” on page 409).

The commands are explained in detail in Chapter 12, “Command Reference” on page 185.

Mellanox Technologies 151 J

8.3

8.4

HCA Driver Teardown and Re-initialization

Each Function of the HCA can be individually and independently shut down (and re-initialized/
restarted later on) by software. When a PF is shut down, its VFs are also shut down. This opera-
tion is performed while the system shuts down gracefully, when PCI bus re-enumeration and
memory re-allocation is required or when user decided to right-click-disable network device. In
this case, software should perform the following steps:

L]

Stop all operations of function being shut down and destroy all resources.
Unmap the EQ that the PAGE request events are mapped to and destroy the EQ.
Execute the TEARDOWN_HCA command to close the HCA.

Call MANAGE PAGES in loop till all pages are reclaimed.

Execute DISABLE HCA command.

After TEARDOWN HCA is acknowledged by the hardware, HCA will not attempt to access
PCI on behalf of that ICM.

Physical port Initialization and Configuration

The physical port managed, configured and controlled using port control registers, see Table 104,
“Ports Register Summary,” on page 161.

Mellanox Technologies 152

J

Part 2: Advanced Mellanox Adapter Features

K 153 Mellanox Technologies

9.1

Data Integrity

The device implements advanced techniques to assure data integrity for both hardware and soft-

warc:

1. Hardware level - the device implements all mandatory and optional data integrity checks on
its physical interfaces (network interface, PCle interface). Hardware assures smooth recovery
in an unlikely event of internal data corruption (SER or alike).

2. Software level - the device validates data integrity of memory-resident control objects and
work queues, reducing probability of bogus I/O operation caused by software that strolled
through control objects and corrupted them.

Hardware-level Data Integrity

The device is designed to assure soft error SDC MTBF of 50,000 years. The device also imple-
ments end-to-end data protection on its data path.

Error recovery and correction error logic is designed to correct internal errors.

Atomic and other certain operations are instantiated multiple times in hardware and an error indi-
cation is set if there is no consensus between them.

Data integrity errors are detected and reported to the software as specified in Table 103.

Table 103 - Data Integrity Detection and Reporting

Interface / Component

Method of Detection

Method of Reporting

PCI Express Inter-
face

LCRC, ECRC and
Advanced Error
Reporting header.

Per PCI Express specification

Network Interface

ICRC, VCRC, Ether-
net CRC, FC CRC

As specified in respective network standards. A packet that
experienced CRC error is discarded and carefully counted in
respective bin.

Internal operation Majority vote Internal Error counter bumped.

errors

Flash Contents 16-bit CRC The device boots in non-operational mode (EEPROM burner
mode), or the device boots normally but fails upon the RUN_FW
command and reports the problem.

SER Exposed Inter- ECC, CRC Respective counter bumped up

nal Logic (All Mem-

ory Arrays)

SER Exposed Inter- ECC Also known as FFSER.

nal Logic (internal Causes immediate disabling of PCI interface. Reset is required

HW registers) in order to continue operation.

Data integrity checks/generation overlap between different domains (for example, “check integ-
rity upon data receive” and “generate ECC before store”).

Mellanox Technologies 154

J

The PCI-Express bus supports data integrity checks. The data integrity checks on the PCI-
Express interface log the address of the access that caused the failure. The address can then be
reported to software and can be associated with a transaction by the application running on top of
the HCA device. Subsequently graceful recovery can be done.

9.2 Software-level Data Integrity - Control Objects’ Consistency Checks

The device implements basic protection against buggy SW that can corrupt its control structures
and objects.

9.2.1 Device Configuration and Control Communication

1. As a first step in protection, the device does not expose its register space for writing. The con-
trol communication with the device is implemented via a Command queue mechanism. See
“HCA Command Queue” on page 144 for more details. Software writes a control message to a
Command queue in system memory.

2. Software seals the Command with an 8-bit XOR signature.

3. If the command includes an input mailbox, the mailbox is also protected by the command sig-
nature. This include all reserved fields of the mailbox.

4. Software informs the device that such command was posted by writing to the “command
DoorBell vector” register in the device. (This is one of the rare writes that is NOT ignored by
the device).

5. The device reads the command from the Command Queue, validates the signature, and will
only proceed if the validation passed.

6. The device writes the output mailbox, updates the status of the command, regenerates the sig-
nature such that it will include the updated status and the output mailbox (input mailbox is not
included).

9.2.2 Memory-resident Control Objects

Control structures required for the HCA operation (context tables, translation tables etc.) are kept
in the host memory allocated for the device. This memory is called Interconnect Context Mem-
ory (ICM) and it is essentially a part of the HCA hardware. See Section 5.1, “Interconnect Context
Memory,” on page 52 for details. Host software should never access memory allocated for the
HCA control objects.

Since the HCA cannot prevent corruption of its ICM memory located in host memory, it imple-
ments basic consistency checks.

Consistency checks are implemented by attaching a signature to every control object. This signa-
ture is generated by the HCA every time it writes an object to memory and this signature is vali-
dated every time it reads the object from memory. If the consistency check fails, the device treats
this object as “not present” (invalid) and generates an event/interrupt to the host software, indi-
cating address of memory location that was corrupted. If a context object corruption is detected
during an I/O operation, it will complete same way as if the corrupted object was invalid or miss-
ing. Other I/O operations will not be affected and execution will proceed.

In order to generate the event notifying of the corruption of a control object, the HCA must read
from ICM memory various control objects for the event queue designated for these reports. If one
of these objects is corrupted, it is impossible for the HCA to generate the event. In this case,
HCA will issue “CONTROL OBJECT CORRUPTION REPORT FAILURE” interrupt; status

Mellanox Technologies 155 J

9.2.3

9.24

information with object address and object ID that caused this failure can be read by software
from “control corruption” register.

We cannot guarantee that HCA can always handle ICM corruption gracefully. For instance, fail-
ure to post EQE reporting object corruption is considered to be a fatal error and HCA will halt
execution - all committed data transfers (PCI and network) will be completed, but no new opera-
tion will start and the HCA will halt awaiting for hardware reset. The mean of this special inter-
rupt (pin, MSIX vector etc.) is configured at HCA initialization step as described in “Initialization
and Teardown” on page 365.

Work Queues Elements Signature

Work Queue Elements (WQEs) undergo syntax/consistency checks as described in the “Work
Request (WQE) Formats” on page 75. These checks assure that operation specified in the WQE is
consistent with queue this WQE is posted on. In addition to these syntax checks, the HCA can
check a signature written on each WQE.

The WQE signature is generated by software posting the WQE. In addition to the WQE itself, the
SQ/RQ number of the queue the WQE is posted to, and the index of that particular WQE are con-
sidered in the signature. Send WQE signature is within the control segment. Receive WQE signa-
ture is in a different, additional segment.

Signatures must be generated by the software posting Work Request, which consumes CPU
cycles. However, in many cases posting Work Request is a performance-critical operation. The
device provides an option to skip consistency checks, thereby avoiding this software overhead on
post operation. Each WQ can be independently configured to enforce WQE signature validation
software.

Completion and Event Queue Elements (CQEs and EQEs)

The HCA inserts a signature to Completion Queue Elements (CQEs) and Event Queue Elements
(EQEs) when writing them. While polling the element from the queue, consumer can check the
signature.

Figure 27 illustrates schematically CQ and EQ containing signature, showing valid and invalid
entries in the queue. Detailed CQE format is discussed in Section 7.12.1.1, “CQE Format,” on
page 117 and EQE in Section 7.13.2.2, “EQE Format,” on page 134.

Figure 27: Completion and Event Queues

Event Queue Completion Queue

signatur inv signatur
EQE CQE

signatur signatur
EQE CQE

signatur signatur
EQE CQE

signatur signatur
EQE CQE

val signatur signatur
EQE CQE

Mellanox Technologies 156

J

Hardware always generates signatures for CQEs and EQEs. Validation of these signatures is
under software control. Consumer can save CPU cycles by ignoring signature field, thereby
accelerating CQ or EQ poll function calls.

Mellanox Technologies 157 J

-

10 Address Translation and Protection Enhancements

10.1

10.1.1

Lightweight Memory Registration

Lightweight memory registration enables the creation of virtually-contiguous address spaces out
of disjoint (non-contiguous) chunks of memory region(s) already registered with the HCA.

With the adapter device, this is done with a User Mode Memory Registration (UMR) Work
Request posted to a SQ. This is the “right way” to execute lightweight memory registration on
the device. UMR is a non-privileged operation enabling creation of a virtually contiguous mem-
ory region on byte granularity. This is the fastest and recommended way to execute light memory
registration on the device.

UMR Work Request is also used for invalidation of memory region/window.
UMR is described below in “User-Mode Memory Registration (UMR)” on page 158.

User-Mode Memory Registration (UMR)

UMR is a mechanism to alter the address translation properties of MKeys by posting Work
Requests on SQs. The key advantage of this mechanism versus prior fast registration implemen-
tations is that this operation can be executed by non-privileged software and the granularity (size
and alignment) of memory sections specified by the KLM entries are not constrained (in contrast
to page or block granularity previously required).

UMR can also alter some of the original MKey fields. MKey fields to update are marked in the
MKeyCtx mask bit (in the UMR control segment) and their new values are taken from the
MKeyCtx section in the UMR WQE.

Not all MKey fields can be changed by a UMR request. HW will block changing fields that
should not be changed. For the list of fields that can be changed, see Table 33, “UMR Control
Segment Fields,” on page 79.

UMR can be executed on a memory region only if the umr_en bit in Mkey Context is set.

An indirect memory key, when initially created, has no virtual to physical mapping and cannot be
used until it is mapped to physical addresses by executing a UMR request on one of the SQs.

UMR uses the MKey index as an argument and fills in its corresponding memory translation
table entries from a list of virtual buffers specified in the UMR request.

UMR specifies access rights for the Mkey being configured. If HCA CAP.imaicl=0, in the
course of address translation, HW validates that the access rights in an indirect MKey do not
exceed the access rights of the MKey pointed by it. An access right (e.g, remote write) is granted
if, and only if, it is allowed by all MKeys processed in the course of this address translation.
Thus, bogus programming of access rights to an indirect MKey is discovered during a memory
access that uses this key and will be reported as a memory access error and not as UMR program-
ming error.

If HCA_CAP.imaicl=1 however, an MKey accessed through an indirect MKey need not have
remote access rights. This allows, for instance, to implement Memory Window (implemented by
an indirect mkey) with remote access bound to a Memory Region (implemented by a direct
mkey) with no remote access rights. Kernel protocol drivers can also use this ability to register
indirect MKeys with remote access on top of the reserved LKey.

Mellanox Technologies

158 J

The new translation given by a UMR request takes effect prior to the execution of the next com-
mand on the same WQ (this WQE should be marked with small-fence), thereby enabling the
posting of a UMR followed by a WQE using the same key in a single operation.

UMR requests of a single indirect MKey can be performed repeatedly. Each UMR request
remaps the MKey’s translation entries. Unlike previous implementations, software does not need
to handle the synchronization of the HCA’s cache. Changing the variant field of the MKey can be
done by software for security purposes, but no cache flush or other synchronization operations
are required for the repeated use of same MKey.

10.1.1.1 UMR Work Request Operation

UMR Work Request modifies a variant part of the MKey and changes its MTT entries, loading a
new list of buffers that will be used for address translation. For invalidation by UMR, however,
no new buffer translation entries are loaded.

Hardware executes the following steps when executing a UMR Work Request:
1. Checks whether the MKey is valid

2. Checks whether the MKey is free

3. Checks whether the PD of the SQ matches the PD of the MKey

4. Checks that the MKC.umr en=1
5

. Checks that buffers’ list specified by the WQE does not exceed the memory allocated for that
MKey

6. If all checks are successful, buffers’ list specified by WQE is copied to MTT and xt fields are
updated

7. Reports completion on the WQE. If some of the checks failed, completion with error is
reported along with advised action to be applied on the programmer.

The protection checks are executed at every stage, either when an indirect MKey or a direct
MKey is used.

Mellanox Technologies 159 J

Part 3: Command Reference and Registers

K 160 Mellanox Technologies

11

1.1

11.1.1

Command Registers

Network Ports Registers

This section lists the various registers that uses to query and modify the physical ports parameters
and capabilities. The table below summarize the port control registers.

Table 104 - Ports Register Summary

Function Applica Protocol
. ble to
Register Name Register ID = Reference
(hex) o lz |= |2 &2
= 21z (= =
HERERERES 3
< |8 (3 g |* =
-
PMTU 0x5003 v |V v | v | v | v [SeeTable 105, “PMTU - Port MTU Register Layout,”
on page 161
PTYS 0x5004 v |V v |V v |See Table 107, “PTYS - Port Type and Speed Register
Fields,” on page 162
PAOS 0x5006 v v v |See Table 109, “PAOS - Ports Administrative and Oper-
ational Status Register Layout,” on page 163
PFCC 0x5007 v |v v See Table 111, “PFCC - Ports Flow Control Configura-
tion Register Layout,” on page 164
PPCNT 0x5008 v v |See Table 113, “PPCNT - Ports Performance Counters
Register Layout,” on page 166

PMTU - Port MTU Register

The PMTU register configures and reports the port MTU.

Table 105 - PMTU - Port MTU Register Layout

31(30(29(28(27(26(25(24(23(22|21|20|19(18|17|16|15|14[13|12(11|10|9 |8 |7 |6 |5|4 |3 |2 |1 0%
&
local port §
t 2
max_mtu =
admin_mtu §
3
oper_mtu =
Table 106 - PMTU - Port MTU Register Fields
Offset | Bits Name Description Access
00h 23:16 |local port Local port number. Index
04h 31:16 |max_mtu Maximum MTU supported on the port (Read Only). RO
08h 31:16 |admin_mtu Administratively configured MTU on the port. Must be smaller or equal to |RW
max_mitu.
Mellanox Technologies 161

J

11.1.2

Table 106 - PMTU - Port MTU Register Fields

Offset

Bits

Name

Description

Access

0Ch

31:16

oper_mtu

Operational MTU. This is the actual MTU configured on the ports. Packets

exceeding this size will be dropped.

RO

PTYS - Port Type and Speed Register
The PTYS register configures and reports the port type speed.

Note:

Setting the admin fields of this register shall only take effect during link training and
negotiation. When set while the link is up, the changes will not take effect unless the port
goes back to training and negotiation state (during transition from down to up state).
Software can force training by disabling and enabling the port.

Table 107 - PTYS - Port Type and Speed Register Fields

3130

29 (28

27

26(25(24|23

22

21(20(19(18|17|16|15(14[13|12|11|10{ 9|8 |7 |6 [5| 4

proto_mask

eth_proto_capability

eth_proto_admin

eth_proto_oper

UDE-¥€|HUOE [UDT| UBT | UPCT [UOT |UOT [UST | Ui | UOT [UD0|U8O U0 | YOO [I°SHO

Mellanox Technologies

162

J

Table 108 - PTYS - Port Type and Speed Register Fields

Offset

Bits

Name

Description

Access

00h

31

reserved

23:16

local_port

Local port number

Index

2:0

proto_mask

Protocol Mask. Indicates which of the protocol data is valid
Bit 2: Ethernet

Index

0Ch

eth_proto_capability | Ethernet port speed/protocols supported (bitmask)

Bit 31 - 50GBase-KR2
Bit 30 - 50GBase-CR2
Bit 29 - 25GBase-SR
Bit 28 - 25GBase-KR
Bit 27 - 25GBase-CR
Bit 22 - 100GBase KR4
Bit 21 - 100GBase SR4
Bit 20 - 100GBase CR4
Bit 18 - 50GBase-SR2Bit 16 - 40GBase LR4/ER4
Bit 15 - 40GBase SR4
Bit 14 - 10GBase ER/LR
Bit 13 - 10GBase SR
Bit 12 - 10GBase CR
Bit 7 - 40GBase KR4
Bit 6 - 40GBase CR4
Bit 4 - 10GBase KR

Bit 3 - 10GBase KX4
Bit 2 - 10GBase-CX4
Bit 1 - 1000Base KX
Bit 0 - SGMII

RO

18h

31:0

eth proto_admin

Ethernet port speed/protocols bitmask

RW

24h

31:0

eth_proto_oper

Ethernet port speed/protocols bitmask

RO

11.1.3 PAOS - Ports Administrative and Operational Status Register

The PAOS register configures and retrieves the per port administrative and operational status.

Table 109 - PAOS - Ports Administrative and Operational Status Register Layout

31

2827

26

25

24123

22

21(20(19(18|17|16|15(14|13(12|11|10| 9 |8 |7 |6 |[5|4 |3

local_port admin_status oper_status

ose

UD0-U80 [U¥0 [40O |ISHO

Mellanox Technologies

163

J

11.1.4

Table 110 - PAOS - Ports Administrative and Operational Status Register Fields

Offset | Bits Name Description Access
00h 31:24 |reserved
23:16 |local port Local port number. Index
11:8 admin_status Port administrative state (the desired state of the interface): RW
1-up
2 - down by configuration
3 - up once - if the port goes up and then down, the operational
status should go to “down by port failure” and can only go back
up upon explicit command
4 - disabled by system - this mode cannot be set by the software,
only by the hardware.
3:0 oper_status Port operational state: RO
1-up
2 - down
4 - down by port failure (transitioned by the hardware)
04h 31 ase Admin state update enable. If this bit is set, admin state will be WO
updated based on admin_state field. Only relevant on Set() opera-
tions.

PFCC - Ports Flow Control Configuration Register

The PFCC register configures and retrieves the per port flow control configuration.
Table 111 - PFCC - Ports Flow Control Configuration Register Layout

3130

29 (28|27

26(25]24(23|22

21

20

19(18|17({16|15[{14|13[12|11({10|9 (8|7 (6|54 |3

local_port

prio_mask tx

prio_mask rx

cHE)
E’ ’g, pfetx
cHE)

*5 E pferx

dev

ice_stall minor watermark

device stall critical watermark

UDT(U8T Ut [UOT | UDO | U8O | U0 | HOO |3°SHO

Note:

Note:

Only a single flow control mechanism can be used on a specific port (for both RX and

TX).

Setting pptx / ppxx when the link is up with ppan = 0 takes effect immediately. Setting
pptx / pprx with ppan = 1 only take effect during the link training and negotiation. Soft-

Mellanox Technologies

164

ware can force training by disabling and enabling the port. Setting pfctx / pfcrx when the
link is up takes effect immediately.

Table 112 - PFCC - Ports Flow Control Configuration Register Fields

Offset | Bits Name Description Access
00h 31:30 |reserved
23:16 |local port Local port number. Index
04h 31:28 |reserved
23:16 |prio_mask tx Bit per prio indicating if TX flow control policy should be updated |WO
based on bit pfctx.
7:0 prio_mask rx Bit per prio indicating if RX flow control policy should be updated |WO
based on bit pferx.
08h 31 pptx Admin pause policy on TX (see also pfctx): RW
0 - never generate pause frames (default)
1 - generate pause frames according to RX buffer threshold
30 aptx Active (operational) pause policy on TX RO
0 - do not generate pause frames
1 - generate pause frames according to RX buffer threshold
23:16 |pfetx Priority based flow control policy on TX[7:0]. Per priority bit mask: |RW
0 - never generate pause frames on the specified priority (default)
1 - generate pause frames according to RX buffer threshold on the
specified priority
pfctx, pptx must be mutually exclusive (for example, only one of them
at most can be set).
8 fetx_disabled Valid only on HCAs. RW
The bit is set if the device has passed the device_stall_critical water-
mark and has become stalled.
When fetx_disabled is set, the device won’t send flow control and pri-
ority flow control (PFC) packets.
0Ch 31 pprx Admin pause policy on RX (see also pferx): RW
0 - ignore received pause frames (default)
1 - respect received pause frames
30 aprx Active (operational) pause policy on RX RO
0 - ignore received pause frames
1 - respect received pause frames
23:16 |pferx Priority based flow control policy on RX[7:0]. Per priority bit mask: |RW
0 - ignore incoming pause frames on the specified priority (default)
1 - respect incoming pause frames on the specified priority
Mellanox Technologies 165

J

Table 112 - PFCC - Ports Flow Control Configuration Register Fields

Offset | Bits Name Description Access
10h 31:16 |device_stall minor wa- |Valid only on HCAs (When rx_activity is set). RW
termark The maximum period for a single received packet processing, if the
packet wasn’t processed during this time, the device will increase the
device_stall_minor_watermark_cnt (PPCNT). Value given in mSec,
The maximum period is 8 sec.
The special value of 0, indicates that the device_stall minor_water-
mark is inactive.
Range: 0x0050 - 0x1F40
15:0 device_stall_criti- Valid only on HCAs (When rx_activity is set). RW
cal_watermark The maximum period for a single received packet processing, if the
packet wasn’t processed during this time, the device will be declared
as stalled and will increase the device_stall_critical watermark_cnt
(PPCNT) counter. Value given in mSec, The maximum period is 8
sec.
The special value of 0, indicates that the device_stall critical water-
mark is inactive.
Range: 0x0050 - 0x1F40
11.1.5 PPCNT - Ports Performance Counters Register
The PPCNT register retrieves per port performance counters.
Table 113 - PPCNT - Ports Performance Counters Register Layout
31130(29(28(27(26(|25|24(23|22(21({20(19(18|17|16|15|14[13|12(11(10(9 |8 |7 |6 |5 |4 (3 |2|1 0;%
&
local_port grp §
clr prio_tc §
)
counter_set =
e
Q
=
Mellanox Technologies 166

J

Table 114 - PPCNT - Ports Performance Counters Register Fields

Offset | Bits Name Description Access

00h 31:24 |reserved

23:16 |local port Local port number. Index

5:0 grp Performance counter group. Index
Group 63 indicates all groups. Only valid on Set() operation with clr bit set.
0x0: IEEE 802.3 Counters

0x1: RFC 2863 Counters

0x2: RFC 2819 Counters

0x3: RFC 3 v 635 Counters

0x10: Per Priority Counters

0x11: Per Traffic Class Counters

0x15: Per Receive Buffer counter

04h 31 clr Clear counters. Setting the clr bit will reset the counter value for all counters |OP
in the counter group. This bit can be set for both Set() and Get() operation.

4:0 prio_tc Priority index for per priority counter sets, valid values: 0-7 Index

Traffic class index for per traffic class counter set, valid values:
For HCA, valid values: 0.. HCA CAP.max _tc

Receive Buffer index for per receive buffer counter set
For Switches only, valid values: 0 .. cap_max_pg_buffers -1

Otherwise must be 0.

08h- 1984 counter_set Counter set as described in RO
FCh See Table 115, “Ethernet IEEE 802.3 Counters Group Data Layout,” on
page 168

See Table 117, “Ethernet RFC 2863 Counter Group Data Layout,” on

page 171

See Table 119, “Ethernet RFC 2819 Counter Group Data Layout,” on

page 174

See Table 121, “Ethernet RFC 3635 Counter Group Data Layout,” on

page 178

See Table 123, “Ethernet Per Priority Group Data Layout,” on page 181
See Table 125, “Ethernet Per Traffic Class Group data layout,” on page 183

11.1.5.1 Ethernet IEEE 802.3 Counters
Table 115 - Ethernet IEEE 802.3 Counters Group Data Layout

31(30(29(28|27(26|25(24(23(22|21|20|19|18|17|16|15(14|13|12|11|10{ 9|8 |7 |6 |5|4[3|2[1]|0

400 | 19S50

a_frames_transmitted_ok_high

Mellanox Technologies 167 J

Table 115 - Ethernet IEEE 802.3 Counters Group Data Layout

31(30(29(28|27(26|25(24(23(22|21|20|19|18|17|16|15(14|13|12|11|10{ 9|8 |7 |6 |5|4[3|2[1]|0

a_frames_transmitted ok low

a_frames_received ok high

a_frames received ok low

a_frame check sequence errors_high

a_frame check sequence errors low

a_alignment_errors_high

a_alignment_errors_low

a_octets_transmitted ok high

a_octets_transmitted ok low

a_octets_received ok high

a_octets_received ok low

a_multicast_frames xmitted ok high

a_multicast_frames xmitted ok low

a_broadcast frames xmitted ok high

a_broadcast frames xmitted ok low

a_multicast_frames received ok high

a_multicast_frames_received ok low

a_broadcast frames_received ok high

a_broadcast frames_received ok low

a_in_range length errors_high

a_in_range length errors_low

a_out of range length field high

a out of range length field low

a_frame too_long_errors_high

a_frame too_long_errors low

a symbol error during_carrier_high

a_symbol error_during_carrier_low

a_mac_control frames_transmitted high

a_mac_control_frames_transmitted low

a_mac_control_frames received_high

a_mac_control frames_received low

UDL|UBL | UPL | HOL [UD9 U89 [UP9 [U09 [UDS | USS | UrS | HOS |UDY | UBY | UbY | UOY [UDE | USE | UPE [UOE |UDT| UBT | UPC | UOT (UDT |UST Uy (YOI (UD0|U80 | Ur0 |I9SHO

Mellanox Technologies 168

J

Table 115 - Ethernet IEEE 802.3 Counters Group Data Layout

3130

2928

27(26(25(24]23(22]|21({20|19(18

17

161514 (13|12 |11

a_unsupported_opcodes_received high

a_unsupported_opcodes_received low

a_pause_mac_ctrl frames received high

a pause_mac_ctrl frames received low

a_pause_mac_ctrl frames transmitted high

a_pause_mac_ctrl frames_transmitted low

Upd-86 | Ur6 | U06 |UO8 | U8B | U8 | HOS |19SHO

Table 116 - Ethernet IEEE 802.3 Counter Group Fields

Offset | Bits Name Description Access

00h |31:0 |a_frames transmitted ok high A count of frames that are successfully transmitted. RO

04h |31:0 |a_frames_transmitted ok low RO

08h [31:0 |a_frames received ok high A count of frames that are successfully received. This |RO

- does not include frames received with frame-too-long,

OCh [31:0 a_frames_received_ok_low frame check sequence (FCS), length or alignment errors, | RO
or frames lost due to other MAC errors.

10h |31:0 |a frame check sequence errors_high A count of receive frames that are an integral number of |[RO
octets in length and do not pass the FCS check. This

14h 131:0 |a_frame check sequence_errors_low does not include frames received with frame-too-long, or RO
frame-too-short (frame fragment) errors.

18h |31:0 |a_alignment errors_high A count of frames that are not an integral number of RO
octets in length and do not pass the FCS check.

ICh |31:0 |a alignment errors_low RO

20h |31:0 |a_octets transmitted ok high A count of data and padding octets of frames that are RO
successfully transmitted.

24h |31:0 |a_octets_transmitted ok low RO

28h |31:0 |a octets _received ok high A count of data and padding octets in frames that are RO

] successfully received. This does not include octets in

2Ch 31:0 |a_octets received ok low frames received with frame-too-long, FCS, length or RO
alignment errors, or frames lost due to other MAC
erTors.

Mellanox Technologies 169

J

Table 116 - Ethernet IEEE 802.3 Counter Group Fields

Offset| Bits Name Description Access

30h [31:0 |a_multicast frames xmitted ok high A count of frames that are successfully transmitted toa |[RO
group destination address other than broadcast.

34h |31:0 |a_multicast frames xmitted ok low RO

38h |31:0 |a_broadcast frames xmitted ok high A count of the frames that were successfully transmitted |RO
to the broadcast address. Frames transmitted to multicast

3Ch [31:0 a_broadcast_frames_xmitted_ok_low addresses are not broadcast frames and are excluded. RO

40h |31:0 |a_multicast frames received ok high A count of frames that are successfully received and RO
directed to an active nonbroadcast group address. This

44h131:0 |a_multicast_frames_received_ok_low does not include frames received with frame-too-long, | RO
FCS, length or alignment errors, or frames lost due to
internal MAC sublayer error.

48h |31:0 |a_broadcast frames_received ok high A count of the frames that were successfully transmitted |RO
to the broadcast address. Frames transmitted to multicast

4Ch |31:0 |a_broadcast_frames_received_ok_low addresses are not broadcast frames and are excluded. RO

50h |31:0 |a_in _range length errors_high A count of frames with a length/type field value between |[RO
the minimum unpadded MAC client data size and the

54h |31:0 |a_in range length errors low maximum allowed MAC client data size, inclusive, that RO
does not match the number of MAC client data octets
received. The counter also increments for frames whose
length/type field value is less than the minimum allowed
unpadded MAC client data size and the number of MAC
client data octets received is greater than the minimum
unpadded MAC client data size.

58h [31:0 |a_out of range length field high A count of frames with a length field value greater than |RO
the maximum allowed LLC data size.

5Ch |31:0 |a_out of range length field low RO

60h [31:0 |a_frame too long errors_high A count of frames received that exceed the maximum |RO
permitted frame size by IEEE 802.3 (MTU size).

64h |31:0 |a_frame too long errors_low RO

Mellanox Technologies 170

J

Table 116 - Ethernet IEEE 802.3 Counter Group Fields

Offset| Bits Name Description Access
68h [31:0 |a_symbol error during carrier_high For full duplex operation at 1000 Mby/s, it is a count of |RO
-) the number of times the receiving media is non-idle (a
6Ch 31:0 |a_symbol_error_during_carrier_low carrier event) for a period of time equal to or greater than | RO
minFrameSize, and during which there was at least one
occurrence of an event that causes the PHY to indicate
“Data reception error”.
For operation at 10 Gb/s, 40 Gb/s, and 100 Gb/s, it is a
count of the number of times the receiving media is non-
idle for a period of time equal to or greater than min-
FrameSize, and during which there was at least one
occurrence of an event that causes the PHY to indicate
Error.
70h |31:0 |a_mac_control frames transmitted high |A count of MAC Control frames passed to the MAC RO
sublayer for transmission.
74h |31:0 |a_mac_control frames_transmitted low RO
78h |31:0 |a_mac_control frames received high A count of MAC Control frames passed by the MAC RO
sublayer to the MAC Control sublayer.
7Ch |31:0 |a_mac_control frames_received low RO
80h |31:0 |a_unsupported opcodes received high A count of MAC Control frames received that contain an |[RO
opcode that is not supported by the device.
84h |31:0 |a_unsupported opcodes received low RO
88h [31:0 |a_pause mac_ctrl frames received high |A count of MAC PAUSE frames passed by the MAC RO
sublayer to the MAC Control sublayer.
8Ch |31:0 |a_pause mac_ctrl frames received low RO
90h |31:0 |a_pause mac ctrl frames transmit- A count of PAUSE frames passed to the MAC sublayer |RO
ted_high for transmission.
94h |31:0 |a_pause mac ctrl frames transmit- RO
ted_low
11.1.5.2 Ethernet RFC 2863 Counters
Table 117 - Ethernet RFC 2863 Counter Group Data Layout
31130(29(28(27(26(25(24|23(22(21|20(19(18|17|16|15|14|13(12|11|10(9 (8 |7 |65 |4 |3 |21 O%
&
if in_octets_high §
if in_octets_low ;
if_in_ucast_pkts_high §
if in_ucast_pkts low §
if in_discards_high §
Mellanox Technologies 171

Table 117 - Ethernet RFC 2863 Counter Group Data Layout

31(30(29(28|27(26|25(24|23|22

21

20

191817 (16| 15(14|13 |12

if in_discards_low

if in_errors_high

if in_errors_low

if in_unknown_protos_high

if in_unknown_protos_low

if out octets_high

if out octets low

if out ucast pkts high

if out discards high

if out discards low

if out errors_high

if out errors_low

if in_multicast_pkts high

if in_multicast pkts low

if in_broadcast pkts high

if in_broadcast pkts low

if out multicast pkts_high

if out multicast pkts_low

if out broadcast pkts high

if out broadcast_pkts low

Urd-89 | Ur9 | H09 |UDS | US | US| UOS [UDY | U8Y | Uby [UOY |UDE| UE | UrE | HOE |UDT|UST |UPT [UOT [UDT [U8 | UP] |I9SHO

Table 118 - Ethernet RFC 2863 Counter Group Fields

Offset| Bits Name Description Access
00h [31:0 |if in_octets high The total number of octets received, including framing charac- |RO
ters. Including MAC control frames.
04h |31:0 [if in_octets low RO
08h |31:0 [if in ucast_pkts high The number of packets successfully received, which were not |RO
— addressed to a multicast or broadcast MAC address.
0Ch [31:0 [if in ucast pkts low RO
Mellanox Technologies 172

Table 118 - Ethernet RFC 2863 Counter Group Fields

Offset| Bits Name Description Access
10h |31:0 |if in discards_high The number of inbound packets which were chosen to be dis- |RO
. carded even though no errors had been detected to prevent
14h131:0 Jif_in_discards_low their being deliverable to a higher-layer protocol. RO
18h |31:0 |if in_errors_high The number of inbound packets that contained errors prevent- |RO
ing them from being deliverable to a higher-layer protocol.
ICh [31:0 |if in_errors low RO
20h |31:0 |if in unknown_protos_high The number of packets received via the interface which were |RO
discarded because of an unknown or unsupported protocol.
24h |31:0 |if in_unknown protos_low RO
28h |31:0 |if out octets high The total number of octets transmitted out of the interface, RO
including framing characters.
2Ch |31:0 |if out octets low RO
30h |31:0 |if out ucast pkts high The total number of packets that higher-level protocols RO
- requested be transmitted and were not addressed to a multicast
34h |31:0 |if out ucast pkts low or broadcast MAC address, including those that were discarded RO
or not sent.
38h [31:0 |if out discards_high The number of outbound packets which were chosen to be dis- | RO
carded, even though no errors had been detected to prevent
3Ch |31:0 |if out discards low their being transmitted. RO
40h |31:0 [|if out errors_high The number of outbound packets that could not be transmitted |RO
because of errors.
44h |31:0 |if out errors_low RO
48h |31:0 |if in_multicast pkts high The number of packets successfully received, which were RO
addressed to a multicast MAC address.
4Ch |31:0 |if in_multicast pkts low RO
50h |31:0 [if in_broadcast pkts high The number of packets successfully received, which were RO
— addressed to a broadcast MAC address.
54h |31:0 |if in_broadcast pkts low RO
Mellanox Technologies 173

Table 118 - Ethernet RFC 2863 Counter Group Fields

Offset| Bits Name Description Access
58h |31:0 |if out multicast pkts high The total number of packets that higher-level protocols RO
-) requested be transmitted, and which were addressed to a multi-
5Ch 131:0 if out_multicast_pkts_low cast MAC address, including those that were discarded or not |RO
sent.
60h |31:0 |if out broadcast_pkts high The total number of packets that higher-level protocols RO
- requested be transmitted, and which were addressed to a broad-
64h |31:0 |if out broadcast pkts low cast MAC address, including those that were discarded or not RO
sent.
11.1.5.3 Ethernet RFC 2819 Counters
Table 119 - Ethernet RFC 2819 Counter Group Data Layout
31(130(29(28(27(26(|25]|24(23|22(21({20(19(18|17|16|15|14|13|12(11(10|9 |8 |7 |6 |54 (3 |(2|1]|0

ether stats drop_events_high

ether_stats _drop_events_low

ether_stats octets_high

ether stats octets_low

ether stats pkts_high

ether stats pkts low

ether stats broadcast pkts high

ether_stats broadcast pkts low

ether_stats multicast pkts high

ether stats_multicast_pkts low

ether stats crc_align errors_high

ether_stats crc_align_errors_low

ether stats undersize pkts_high

ether_stats undersize pkts low

ether stats oversize pkts high

ether stats oversize pkts_low

ether stats fragments high

ether stats fragments low

ether stats jabbers high

Uy | Uy | U0y |UDE | USE [UPE [U0€E [UDT| UST | UPC |HOT |UDT|UT | Ul [UOT [UD0|U80 [Ur0 [40O [ISHO

Mellanox Technologies

174

Table 119 - Ethernet RFC 2819 Counter Group Data Layout

3130

2928

27

26

25

24

23

22

21

20(19|18(17|16(15|14 (13|12 |11

ether stats jabbers low

ether stats collisions_high

ether stats collisions low

ether_stats pkts64octets high

ether_stats pkts64octets low

ether stats pkts65tol127octets_high

ether_stats pkts65tol127octets low

ether stats pkts128to255octets_high

ether stats pkts128to255octets low

ether_stats pkts256to511octets high

ether_stats pkts256to511octets low

ether stats pkts512to1023octets_high

ether stats pkts512to1023octets_low

ether stats pkts1024to1518octets high

ether stats pkts1024to1518octets low

ether_stats pkts1519t02047octets_high

ether_stats pkts1519t02047octets low

ether_stats pkts2048to4095octets_high

cther_stats pkts2048to40950ctets low

ether stats pkts4096to8191octets high

ether stats pkts4096to8191octets low

ether_stats pkts8192to10239octets_high

ether_stats pkts8192to10239octets_low

Urd-8V | UpV [UOV [UD6 | U86 | Ur6 | H06 |UDB| UB8 | U8 | UOS [UDL [USL [UPL [UOL [UD9| U89 | U9 | HO9 |UDS | UBS | US | UOS [UDY [I9SHO

Table 120 - Ethernet RFC 2819 Counter Group Fields

Offset| Bits Name Description Access
00h |31:0 |ether stats drop events high The total number of events in which packets were RO
dropped by the probe due to lack of resources.
04h |31:0 |ether stats drop_events low RO
Mellanox Technologies 175

J

Table 120 - Ethernet RFC 2819 Counter Group Fields

Offset| Bits Name Description Access
08h [31:0 |ether stats octets high The total number of octets of data (including those in |RO
bad packets) received (excluding framing bits but
0Ch [31:0 |ether stats octets low including FCS octets). RO
10h |31:0 |ether stats pkts_high The total number of packets (including bad packets, |RO
broadcast packets, and multicast packets) received.
14h |31:0 |ether stats pkts low RO
18h |31:0 |ether stats broadcast pkts high The total number of good packets received that were |RO
directed to the broadcast address.
ICh 3110 |ether_stats_broadcast_pkts_low Note: This does not include multicast packets. RO
20h |31:0 |ether stats multicast pkts high The total number of good packets received that were |RO
- directed to a multicast MAC address.
24h131:0 |ether_stats_multicast_pkts_low Note: This number does not include packets directed |RO
to the broadcast address.
28h |31:0 |ether stats crc align errors_high The total number of packets received that had a length |[RO
- (excluding framing bits, but including FCS octets) of
2Ch |31:0 |ether_stats crc_align_errors_low between 64 and MTU octets, inclusive, but had either |RO
a bad frame check sequence (FCS) with an integral
number of octets (FCS error) or a bad FCS with a
non-integral number of octets (alignment error).
30h |31:0 |ether stats undersize pkts_high The total number of packets received that were less |RO
) than 64 octets long (excluding framing bits, but
34h [31:0 ether_stats_undersize_pkts_low including FCS octets) and were otherwise well RO
formed.
38h |31:0 |ether stats oversize pkts high The total number of packets received that were longer |RO
- than MTU octets (excluding framing bits, but includ-
3Ch [31:0 ether_stats_oversize_pkts_low ing FCS octets) but were otherwise well formed. RO
40h |31:0 |ether stats fragments high The total number of packets received that were less |RO
than 64 octets in length (excluding framing bits but
44h131:0 |ether_stats_fragments_low including FCS octets) and had either a bad FCS with |RO
an integral number of octets (FCS error) or a bad FCS
with a non-integral number of octets (alignment
error).
Mellanox Technologies 176

J

Table 120 - Ethernet RFC 2819 Counter Group Fields

Offset| Bits Name Description Access
48h |31:0 |ether stats jabbers high The total number of packets received that were longer |RO
- than MTU octets (excluding framing bits, but includ-

4Ch |31:0 |ether_stats_jabbers_low ing FCS octets), and had either a bad FCS with an RO
integral number of octets (FCS error) or a bad FCS
with a non-integral number of octets (alignment
error).

50h |31:0 |ether stats_collisions_high The best estimate of the total number of collisions on |RO
this Ethernet segment.

54h |31:0 |ether stats collisions low RO

58h |31:0 |ether stats pkts64octets high The total number of packets (including bad packets) |RO
received that were 64 octets in length (excluding

S5Ch |31:0 |ether stats pkts64octets low framing bits but including FCS octets). RO

60h |31:0 |ether stats pkts65tol27octets_high The total number of packets (including bad packets) |RO
received that were between 65 and 127 octets in

64h 31:0 |ether_stats pkts65tol27octets low length (excluding framing bits but including FCS RO
octets).

68h |31:0 |ether stats pkts128to2550ctets high The total number of packets (including bad packets) |RO
received that were between 128 and 255 octets in

6Ch |31:0 |ether stats pkts128to255octets low length (excluding framing bits but including FCS RO
octets).

70h |31:0 |ether stats pkts256toS1loctets high The total number of packets (including bad packets) |RO
received that were between 256 and 511 octets in

74h |31:0 |ether stats pkts256to51loctets low length (excluding framing bits but including FCS RO
octets).

78h |31:0 |ether stats pkts512to1023octets_high The total number of packets (including bad packets) |RO
received that were between 512 and 1023 octets in

7Ch |31:0 |ether stats pkts512to1023octets low length (excluding framing bits but including FCS RO
octets).

80h [31:0 |ether stats pkts1024tol1518octets high The total number of packets (including bad packets) |RO
received that were between 1024 and 1518 octets in

84h |31:0 |ether stats pkts1024tol1518octets low length (excluding framing bits but including FCS RO
octets).

88h [31:0 |ether stats pkts1519t02047octets high The total number of packets (including bad packets) |RO
received that were between 1519 and 2047 octets in

8Ch [31:0 |ether stats pkts1519t02047octets low length (excluding framing bits but including FCS RO
octets).

90h [31:0 |ether stats pkts2048to4095octets high The total number of packets (including bad packets) |RO
received that were between 2048 and 4095 octets in

94h 31:0 |ether stats pkts2048to4095octets low length (excluding framing bits but including FCS RO
octets).

98h |31:0 |ether stats pkts4096to8191octets high The total number of packets (including bad packets) |RO
received that were between 4096 and 8191 octets in

9Ch |31:0 |ether stats pkts4096to8191octets_low length (excluding framing bits but including FCS RO
octets).

Mellanox Technologies 177

Table 120 - Ethernet RFC 2819 Counter Group Fields

Offset | Bits Name

Description

Access

AOh |31:0 |ether stats pkts8192to10239octets high

The total number of packets (including bad packets)

Adh |31:0 |ether stats pkts8192to10239octets low

received that were between 8192 and 10239 octets in
length (excluding framing bits but including FCS
octets).

RO

11.1.5.4 Ethernet RFC 3635 Counters

Table 121 - Ethernet RFC 3635 Counter Group Data Layout

31130(29(28(27(26(|25|24|23|22|21({20({19(18(17

16151413 (12|11

dot3stats_alignment_errors_high

dot3stats_alignment_errors_low

dot3stats_fcs_errors_high

dot3stats_fcs errors_low

dot3stats_single collision frames_high

dot3stats_single collision_frames low

dot3stats multiple collision_frames_high

dot3stats multiple collision frames low

dot3stats_sqe_test_errors_high

dot3stats_sqe test errors_low

dot3stats_deferred transmissions_high

dot3stats_deferred_transmissions_low

dot3stats late collisions_high

dot3stats_late collisions_low

dot3stats_excessive_collisions_high

dot3stats_excessive_collisions low

dot3stats_internal _mac transmit_errors_high

dot3stats_internal mac transmit_errors low

dot3stats_carrier_sense_errors_high

dot3stats carrier_sense errors_low

dot3stats_frame too_longs_high

dot3stats_frame too longs low

dot3stats_internal mac receive errors_high

dot3stats_internal mac receive errors low

dot3stats_symbol errors_high

Y09 |UDS | U8S | UpS [UOS [UDF | U8Y | Uk | UOY |UDE| UBE | UPE | HOE |UDT| UST [UPCT (UOT [UDT [U8T | UrI |HOT |UDO| U0 | U0 | OO (I9SHO

Mellanox Technologies

178

Table 121 - Ethernet RFC 3635 Counter Group Data Layout

3113012928 (27(26(25(24(23]|22|21|20(19(18|17|16|15|14|13|12(11(10{9 (8|7 |6 |54 |3 |2 |1 0%
8
dot3stats_symbol_errors_low §
dot3control_in_unknown_opcodes high g
dot3control_in unknown opcodes_low §
dot3in_pause frames high §
dot3in_pause frames low 4;
dot3out_pause frames_high 3]:_?
dot3out_pause frames low §
oo
it
Frq
N
=
Table 122 - Ethernet RFC 3635 Counter Group Fields
Offset| Bits Name Description Access
00h [31:0 |dot3stats alignment errors_high A count of frames received that are not an integral number
of octets in length and do not pass the FCS check.
04h |31:0 |dot3stats alignment errors low
08h |31:0 |dot3stats fcs errors_high A count of frames received that are an integral number of
octets in length but do not pass the FCS check. This count
0Ch [31:0 dot3stats_fcs_errors_low does not include frames received with frame-too-long or
frame-too-short errors.
10h [31:0 |dot3stats _single collision - A count of frames that are involved in a single collision,
frames_high and are subsequently transmitted successfully.
This counter does not increment when the interface is
14h |31:0 |dot3stats single collision frames low operating in full-duplex mode.
18h [31:0 |dot3stats multiple collision - A count of frames that are involved in more than one colli-
frames_high sion and are subsequently transmitted successfully.
) - This counter does not increment when the interface is
ICh |31:0 |dot3stats multiple collision - operating in full-duplex mode.
frames low
20h |31:0 |dot3stats sqe test errors_high A count of times that the SQE TEST ERROR is received
on a particular interface.
24h 131:0 |dot3stats_sqe_test_errors_low This counter does not increment on interfaces operating at
speeds greater than 10 Mb/s, or on interfaces operating in
full-duplex mode.
28h |31:0 |dot3stats deferred transmissions_high | A count of frames for which the first transmission attempt
on a particular interface is delayed because the medium is
2Ch |31:0 |dot3stats_deferred_transmissions_low busy.
This counter does not increment when the interface is
operating in full-duplex mode.
Mellanox Technologies 179

J

Table 122 - Ethernet RFC 3635 Counter Group Fields

Offset| Bits Name Description Access
30h |31:0 |dot3stats late collisions high The number of times that a collision is detected on a par-
- ticular interface later than one slotTime into the transmis-
34h [31:0 |dot3stats late collisions low sion of a packet.
This counter does not increment when the interface is
operating in full-duplex mode.
38h |31:0 |dot3stats_excessive collisions_high A count of frames for which transmission on a particular
) . interface fails due to excessive collisions.
3Ch 13110 | dot3stats_excessive_collisions_low This counter does not increment when the interface is
operating in full-duplex mode.
40h |31:0 |dot3stats internal mac transmit er- |A count of frames for which transmission failed and were
rors_high discarded even though no errors had been detected to pre-
vent their being deliverable to a higher-layer protocol.
44h |31:0 |dot3stats internal mac transmit er-
rors_low
48h |31:0 |dot3stats_carrier sense errors_high The number of times that the carrier sense condition was
- lost or never asserted when attempting to transmit a frame
4Ch |31:0 |dot3stats carrier sense errors_low on a particular interface.
This counter does not increment when the interface is
operating in full-duplex mode.
50h |31:0 |dot3stats frame too longs high A count of frames received that exceed the maximum per-
mitted frame size.
54h |31:0 |dot3stats frame too longs low
58h |31:0 |dot3stats internal mac receive er- A count of frames for which reception failed and were dis-
rors_high carded even though no errors had been detected to prevent
-) their being deliverable to a higher-layer protocol.
S5Ch |31:0 |dot3stats internal mac receive er-
rors_low
60h |31:0 |dot3stats symbol errors high The number of times the receiving media is non-idle (a
carrier event) for a period of time equal to or greater than
64h |31:0 | dot3stats symbol errors_low minFrameSize, and during which there was at least one
occurrence of an event that causes the PHY to indicate
'Receive Error'.
68h |31:0 |dot3control in unknown op- A count of MAC Control frames received that contain an
codes_high opcode that is not supported.
6Ch |31:0 |dot3control in unknown op-
codes_low
70h |31:0 |dot3in_pause frames high A count of MAC Control frames received with an opcode
indicating the PAUSE operation.
74h |31:0 |dot3in_pause frames low
Mellanox Technologies 180

J

Table 122 - Ethernet RFC 3635 Counter Group Fields

Offset| Bits Name Description Access

78h |31:0 |dot3out pause frames high A count of MAC Control frames transmitted with an
opcode indicating the PAUSE operation.

7Ch |31:0 |dot3out pause frames low

11.1.5.5 Ethernet Per Priority Counters
Table 123 - Ethernet Per Priority Group Data Layout

3113012928 (27(26(25(24(23|22|21|20(19(18[17|16|15|14|13|12(11({10{9 |8 |7 |6 |5 |4 |3 |(2|1]0

rx_octets_high

rx_octets_low

UOT[UST | Uil | UOT (UD0|U80 U0 |HOO [I°SHO

rx_frames high

rx_frames low

tx_octets_high

tx_octets_low

tx_frames_high

tx_frames_low

rx_pause_high

rx_pause low

rx_pause_duration_high

rx_pause_duration_low

tx_pause_high

409 |UDS [U8S | UPS [UOS |UDY| U8y | Uty | HOY [UDE | UE | UPE |UOE |UDT|U8T | Ui | U0T

Mellanox Technologies 181 J

Table 123 - Ethernet Per Priority Group Data Layout

3130

2928

27(26(25(24123(22|21(20|19(18|17(16|15(14|13(12|11(10|{9 (8|7 |6 |5 |4 |3

tx_pause_low

tx_pause_duration_high

tx_pause_duration low

rx_pause_transition_high

rx_pause_transition low

rx_discards_high

rx_discards_low

device stall minor watermark cnt high

device stall minor watermark cnt low

device stall critical watermark cnt high

device_stall critical watermark cnt low

Urd-U06 |UD8 | U8 |UP8 [U08 [UDL | USL | UPL |UOL |UD9| U9 | UP9 |3°SHO

Table 124 - Ethernet Per Priority Group Fields

Offset | Bits Name Description Access
00h [31:0 |rx_octets_high The total number of octets received, including framing characters. RO
04h |31:0 |rx_octets low RO
20h |31:0 |rx_frames_high The total number of packets received for this priority (including control |RO
frames).
24h |31:0 |rx_frames low RO
28h |31:0 |tx_octets high The total number of octets transmitted, including framing characters. RO
2Ch [31:0 |tx_octets_low RO
48h |31:0 |tx_frames_high The total number of packets transmitted. RO
4Ch |31:0 |tx_frames low RO
50h |31:0 |rx_pause high The total number of PAUSE frames received from the far-end port. RO
54h |31:0 |rx_pause low RO
58h |31:0 |rx_pause duration high |The total time in microseconds that transmission of packets to the far-end |RO
port have been paused.
5Ch |31:0 |rx_pause_duration low RO
Mellanox Technologies 182

Table 124 - Ethernet Per Priority Group Fields

Offset| Bits Name Description Access
60h |31:0 |tx pause high The total number of PAUSE or PFC frames sent to the far-end port. RO
64h |31:0 |[tx pause low RO
68h |31:0 |tx pause duration high |The total time in microseconds that the far-end port have been requested |RO
to paused.
6Ch |31:0 |[tx pause duration low RO
70h |31:0 |rx_pause_transi- Counts the number of transitions from Xoff to Xon. RO
tion_high
74h |31:0 |rx_pause_transition low RO
78h |31:0 |rx_discards high RO
7Ch |31:0 |rx_discards low RO
80h [31:0 |device stall minor wa- | The number of times the device detected a stalled state for a period longer |[RO
termark cnt_high than device_stall_minor_watermark
)) The counter is presented in priority 0, but is a sum of all events on all pri-
84h |31:0 |device stall minor_wa- |q.ities (including global pause). RO
termark cnt low
88h |31:0 |device stall criti- The number of times the device detected a stalled state for a period longer |RO
cal watermark cnt_high |than device_stall _critical watermark
- - The counter is presented in priority 0, but is a sum of all events on all pri-
8Ch |31:0 |device stall criti- orities (including global pause). RO
cal watermark cnt low
11.1.5.6 Ethernet Per Traffic Class Counters
Table 125 - Ethernet Per Traffic Class Group data layout
3113012928 (27(26(25(24(23]|22|21|20(19(18(17|16|15|14|13|12(11({10{9 |8 |7 |6 |5 |43 |(2|1]0

transmit_queue_high

transmit_queue low

no_buffer discard uc high

no_buffer discard uc low

Urd-U0T [UD0 | U80 [U0 [UOO [PSHO

Mellanox Technologies 1

83

J

Table 126 - Ethernet Per Traffic Class Group Fields

Offset Bits Name Description Access
00h 31:0 transmit_queue high Contains the transmit queue depth in bytes on traffic class selected |RO
by traffic_class of the port selected by local_port.
04h 31:0 transmit_queue_low Y traffic_ P Y 7 RO
08h 31:0 no_buffer dis- The number of unicast packets dropped due to lack of shared buffer |RO
card uc_high resources.
Valid only for Spectrum.
0Ch 31:0 no_buffer dis- RO
card uc low
Mellanox Technologies 184

J

12

12.1

Command Reference

This chapter is a reference for all the configuration commands that can be executed via the
device’s command interface. For each command, the chapter describes the input and output argu-
ments and certain restrictions (such as whether an event can be generated for the command com-
pletion).

These commands are used to read HCA capabilities and status and to configure the HCA. This is
in addition to MAD interface also used for those purposes.

Introduction
Notes:

* Reserved fields on input must be set to 0
* Reserved fields on output must be ignored by software
» Fields that appear void are considered reserved for every practical purpose

* When a command is not completed successfully, output data is undefined, unless other-
wise specified

Table 127 lists all the commands described in this chapter sorted by the opcode along with links
to the respective sections describing the commands.

Table 127 - Commands List Sorted by Opcode (Sheet 1 of 4)

Group Opcode Command Name Link to Command Description
Init 0x100 QUERY_HCA_CAP Section 12.3.3, on page 194
Init 0x101 QUERY_ADAPTER Section 12.3.5, on page 210
Init 0x102 INIT_HCA Section 12.3.6, on page 213
Init 0x103 TEARDOWN_HCA Section 12.3.7, on page 213
Init 0x104 ENABLE_HCA Section 12.3.8, on page 215
Init 0x105 DISABLE_HCA Section 12.3.9, on page 215
Init 0x107 QUERY_PAGES Section 12.3.1, on page 190
Init 0x108 MANAGE_PAGES Section 12.3.2, on page 191
Init 0x109 SET_HCA_CAP Section 12.3.4, on page 208
Init 0x10A QUERY _ISSI Section 12.3.10, on page 216
Init 0x10B SET _ISSI Section 12.3.11, on page 218
Init 0x10D SET _DRIVER VERSION Section 12.3.12, on page 218
TPT 0x200 CREATE_MKEY Section 12.5.1, on page 228
TPT 0x201 QUERY_MKEY Section 12.5.2, on page 230
TPT 0x202 DESTROY_MKEY Section 12.5.3, on page 232

Mellanox Technologies 185

J

Table 127 - Commands List Sorted by Opcode (Sheet 2 of 4)

Group Opcode Command Name Link to Command Description
TPT 0x203 QUERY_SPECIAL_CONTEXTS Section 12.5.4, on page 233
EQ 0x301 CREATE_EQ Section 12.6.1, on page 234
EQ 0x302 DESTROY_EQ Section 12.6.2, on page 236
EQ 0x303 QUERY_EQ Section 12.6.3, on page 237
EQ 0x304 GEN_EQE Section 12.6.4, on page 239
CcQ 0x400 CREATE_CQ Section 12.7.1, on page 240
CcQ 0x401 DESTROY_CQ Section 12.7.2, on page 242
CcQ 0x402 QUERY_CQ Section 12.7.3, on page 243
CcQ 0x403 MODIFY_CQ Section 12.7.4, on page 244
VPORT 0x750 QUERY_VPORT_STATE Section 12.16.1, on page 308
VPORT 0x751 MODIFY_VPORT_STATE Section 12.16.2, on page 309
VPORT 0x754 QUERY_NIC_VPORT CONTEXT Section 12.16.3, on page 310
VPORT 0x755 MODIFY_NIC_VPORT _CONTEXT Section 12.16.4, on page 311
COUNTER | 0x770 QUERY_VPORT _COUNTER Section 12.17.1, on page 313
MISC 0x800 ALLOC_PD Section 12.3.13, on page 220
MISC 0x801 DEALLOC_PD Section 12.3.14, on page 221
MISC 0x802 ALLOC_UAR Section 12.3.15, on page 222
MISC 0x803 DEALLOC_UAR Section 12.3.16, on page 223
MISC 0x804 CONFIG_INT_MODERATION Section 12.3.17, on page 224
MISC 0x805 ACCESS_REG Section 12.4.1, on page 227
MISC 0x80D NOP Section 12.18.1, on page 315
MISC 0x816 ALLOC_TRANSPORT DOMAIN Section 12.3.18, on page 225
MISC 0x817 DEALLOC_TRANSPORT_DOMAIN Section 12.3.19, on page 226
MISC 0x829 SET L2 TABLE ENTRY Section 12.15.1, on page 304
MISC 0x82A QUERY_L2_TABLE_ENTRY Section 12.15.2, on page 305
MISC 0x82B DELETE L2 TABLE _ENTRY Section 12.15.3, on page 306
TIR 0x900 CREATE_TIR Section 12.8.1, on page 247
TIR 0x901 MODIFY_TIR Section 12.8.2, on page 248
TIR 0x902 DESTROY_TIR Section 12.8.3, on page 250

Mellanox Technologies 186

J

Table 127 - Commands List Sorted by Opcode (Sheet 3 of 4)

Group Opcode Command Name Link to Command Description
TIR 0x903 QUERY_TIR Section 12.8.4, on page 251
SQ 0x904 CREATE_SQ Section 12.10.1, on page 257
SQ 0x905 MODIFY_SQ Section 12.10.2, on page 258
SQ 0x906 DESTROY_ SQ Section 12.10.3, on page 260
SQ 0x907 QUERY_SQ Section 12.10.4, on page 261
RQ 0x908 CREATE_RQ Section 12.11.1, on page 262
RQ 0x909 MODIFY_RQ Section 12.11.2, on page 263
RQ 0x90A DESTROY RQ Section 12.11.3, on page 265
RQ 0x90B QUERY_RQ Section 12.11.3, on page 265
RQ 0x90C CREATE_RMP Section 12.13.1, on page 272
RQ 0x90D MODIFY_RMP Section 12.13.2, on page 273
RQ 0x90E DESTROY_RMP Section 12.13.3, on page 274
RQ 0x90F QUERY_RMP Section 12.13.4, on page 275
TIS 0x912 CREATE_TIS Section 12.9.1, on page 252
TIS 0x913 MODIFY_TIS Section 12.9.2, on page 253
TIS 0x914 DESTROY_TIS Section 12.9.3, on page 254
TIS 0x915 QUERY_TIS Section 12.9.4, on page 255
RQT 0x916 CREATE_RQT Section 12.12.1, on page 267
RQT 0x917 MODIFY_RQT Section 12.12.2, on page 268
RQT 0x918 DESTROY_RQT Section 12.12.3, on page 269
RQT 0x919 QUERY_RQT Section 12.12.4, on page 270
FLOW 0x92f SET_FLOW_TABLE_ROOT Section 12.14.4, on page 282
TABLE
FLOW 0x930 CREATE_FLOW_TABLE Section 12.14.1, on page 277
TABLE
FLOW 0x931 DESTROY _FLOW_TABLE Section 12.14.3, on page 280
TABLE
FLOW 0x932 QUERY_FLOW_TABLE Section 12.14.5, on page 283
TABLE
FLOW 0x933 CREATE_FLOW_GROUP Section 12.14.6, on page 284
TABLE

Mellanox Technologies 187

J

Table 127 - Commands List Sorted by Opcode (Sheet 4 of 4)

Group Opcode Command Name Link to Command Description
FLOW 0x934 DESTROY_ FLOW_GROUP Section 12.14.7, on page 291
TABLE
FLOW 0x935 QUERY_FLOW_GROUP Section 12.14.8, on page 292
TABLE
FLOW 0x936 SET FLOW_TABLE ENTRY Section 12.14.9, on page 294
TABLE
FLOW 0x937 QUERY FLOW TABLE ENTRY Section 12.14.10, on
FLOW 0x938 DELETE FLOW_TABLE ENTRY Section 12.14.11, on
TABLE page 299
FLOW 0x939 ALLOC _FLOW_COUNTER Section 12.14.12, on
TABLE page 300
FLOW 0x93a DEALLOC FLOW_COUNTER Section 12.14.13, on
TABLE page 301
FLOW 0x93b QUERY_FLOW_COUNTER Section 12.14.14, on
TABLE page 302
FLOW 0x93¢ MODIFY_FLOW_TABLE Section 12.14.2, on page 279
TABLE

Mellanox Technologies 188

J

12.2

12.3

Return Status Summary

The following table summarizes the return status enumerators for all the commands.
Table 128 - Return Status Summary

Category| Value Name Description
General |0x00 OK Command execution succeeded
0x01 INTERNAL_ERR |Internal error (for example bus error) occurred while processing command
0x02 BAD OP Operation/command not supported or opcode modifier not supported
0x03 BAD PARAM Parameter not supported, parameter out of range, reserved not equal 0
0x04 BAD_SYS STATE |System was not enabled or bad system state
0x05 BAD RESOURCE |Attempt to access reserved or unallocated resource, or resource in inappropriate sta-
tus. for example, not existing CQ when creating SQ/RQ
0x06 RESOURCE_BUS |Requested resource is currently executing a command.
Y No change in any resource status or state. i.e. command just not executed.
0x08 EXCEED_LIM Required capability exceeds device limits
0x09 BAD RES STATE |Resource is not in the appropriate state or ownership
0x0A BAD_INDEX Index out of range (might be beyond table size or attempt to access a reserved
resource)
0xOF NO_RESOURCES |Command was not executed because of lack of resources (for example ICM pages).
This is unrecoverable situation from driver point of view
0x50 BAD_INPUT_LEN |Bad command input len
0x51 BAD_OUT- Bad command output len
PUT_LEN
RQ/SQ/ |0x10 BAD RE- Attempt to modify a Resource (RQ/SQ/TIR/TISs) which is not in the presumed
TIR/TIS SOURCE_STATE |state
CcQ 0x40 BAD SIZE More outstanding CQEs in CQ than new CQ size

Note: Hardware is not required to check all parameters of the command interface. To speed up command exe-
cution in hardware, some of the checks may not be implemented by the adapter device, and thus not all return
status values are applicable. The basic assumption is that software performs all appropriate checks prior to exe-
cuting the command. Errors that may not be returned include: BAD SYS STATE, BAD RES STATE,
BAD_INDEX, INTERNAL ERR, etc.

Note: Not all return statuses apply to each command.

Initialization and General Commands

Once HCA has booted and undergone the PCI enumeration, the driver should perform the steps
defined in the initialization chapter (see “HCA Driver Start-up” on page 366).

To take down the HCA, the driver should follow the steps described in Section 11.2, “HCA
Driver Start-up,” on page 366.

Mellanox Technologies 189

J

The following are initialization and general commands that can be executed from the command

interface.

Table 129 - Initialization and General Commands

Mnemonic

Command

Description

Reference

QUERY_PAGES

Query device free
memory pool status

Returns the status of the free memory
page pool

Section 12.3.1, on
page 190

MANAGE PAGES

Deliver / return mem-

Passes additional memory pages for

Section 12.3.2, on

ory pages to the the device usage page 191
device
QUERY_HCA CAP Query device capabil- | Returns the device limits and the capa- | Section 12.3.3, on

ities

bilities supported

page 194

SET HCA_CAP

Set device capabili-
ties

Sets the device limits and the capabili-
ties supported

Section 12.3.4, on
page 208

QUERY_ADAPTER Query adapter Queries card/board parameters and Section 12.3.5, on
properties page 210
INIT_HCA INIT HCA Initiates and opens the HCA Section 12.3.6, on

page 213

TEARDOWN_HCA

Tear-down HCA

Releases all HCA allocated resources

Section 12.3.7, on
page 213

ALLOC PD Allocate protection Allocates PD Section 12.3.13, on
domain page 220

DEALLOC PD De-allocate protec- De-allocates PD Section 12.3.14, on
tion domain page 221

ALLOC _UAR Allocate UAR Allocates UAR Section 12.3.15, on

page 222

DEALLOC UAR

De-allocate UAR

De-allocates UAR

Section 12.3.16, on

page 223

CONFIG_INT_MOD-
ERATION

Configure interrupt
moderation

Sets a maximal interrupt frequency

Section 12.3.17, on

page 224

12.3.1 QUERY_PAGES - Query Device Free Memory Pool Status

The QUERY PAGES command returns the status of the free memory page pool. A positive
number indicates that the function has spare pages that can be reclaimed by the host. A given
number indicates that the function needs more pages, which should be provided by software
using the MANAGE PAGES command. The value is the number of spare / needed 4KB pages.

Mellanox Technologies 190

J

Table 130 - QUERY_PAGES Input Structure Layout

31(30(29(28(27|26(25|24|23|22|21/20|19|18|17|16|15(14|13|12[11|10{9 |8 |7 |6 |[5|4 (3|2 |1 0%
&
opcode §
op_mod §
S
(o]
=
)
Q
=
Table 131 - QUERY_PAGES Input Structure Field Descriptions
Offset Bits Name Description Access
00h 31:16 | opcode
04h 15:0 op_mod Opcode modifier
0x1: boot_pages
0x2: init_pages
0x3: regular_pages
Table 132 - QUERY_PAGES Output Structure Layout
31(30(29(28(27|26(25|24|23|22|21/20|19|18|17|16|15(14|13|12[11|10{ 9 |8 |7 |6 |5|4 (3|2 |1 0%
&
status =
d =
syndrome =
()
(o]
=
)
num_pages Q

Table 133 - QUERY_PAGES Output Structure Field Descriptions

Offset | Bits Name Description Access

00h 31:24 | status

04h 31:0 syndrome

0Ch 31:0 num_pages Number of pages the device requires from the driver (positive num-
bers means driver should provide pages. Negative number means the
driver should reclaim pages).

12.3.2 MANAGE_PAGES - Driver Delivers Memory Pages for the Device Usage or
Returns Pages

The MANAGE PAGES command passes 4KB physical pages to the HCA or returns them to the
host. This memory is used by the HCA to store its various contexts. MANAGE PAGES must be

Mellanox Technologies 191

used prior to INIT HCA to provide the device with the initial memory it requires for boot.
MANAGE_ PAGES should be executed once, per event in response to Page Request Event. Phys-
ical memory passed in this command must be pinned. This command also arms the Page Request
Event. This implies that once Page Request Event is generated, it will not be generated again
before the driver executes this command.

Driver will execute MANAGE PAGES with opcode modifier = 0 if it was required to provide

pages but is unable to (for example, failure to allocate memory).

Table 134 - MANAGE_PAGES Input Structure Layout

31(30|29

28 (27

2625|2423

22

21

20

19

18

17

16

15

14

opcode

op_mod

input num_entries

pas[0]

pas[1]

UDI-8T U I-U40T ' UD0| U0 | U0 | UOO |I°SHO

Table 135 - MANAGE_PAGES Input Structure Field Descriptions

Offset | Bits Name Description Access
00h 31:16 | opcode
04h 15:0 op_mod Opcode modifier
0x0: ALLOCATION_FAIL - SW cannot give pages. No mailbox is
valid.
0x1: ALLOCATION_SUCCESS - SW gives pages to HCA. Input
parameter and input mailbox are valid.
0x2: HCA_RETURN_PAGES - SW requests to return pages from
HCA back to the host. Input parameter, output parameter and out-
put mailbox are valid.
0Ch 31:0 input_num_entries Number of valid PAS entries
10h-... | 64 pasl...]
Table 136 - MANAGE_PAGES Output Structure Layout
3130|2928 (27(26(25(24|23|22|21|20(19(18|17|16|15|14|13|12|11(10{9 |8 |7 |6 |5 | 4 2|1 O%
&
status S
d £
syndrome =
Mellanox Technologies 192

J

Table 136 - MANAGE_PAGES Output Structure Layout

31(30|29

28 (27

26(25|24(23(22 |21

20

191817161514 |13|12|11(10{ 9 [8 |7 |6 |5 |4 |3

output_num_entries

pas[0]

pas[1]

UOT-URT |Uy1-U40T | UD0| U0 |90

Table 137 - MANAGE_PAGES Output Structure Field Descriptions

Offset | Bits Name Description Access
00h 31:24 | status

04h 31:0 syndrome

08h 31:0 output_num_entries Number of returned PAS entries

10h-... | 64 pasl...]

The MANAGE PAGES command uses the following Physical Address Structure (PAS) layout
data structure.

Table 138 - Physical_Address_Structure (PAS) Layout

31[30(29|28|27(26(25|24|23|22(21|20|19(18|17|16|15{14|13|12|11|{10{9 |8 |7 |6 |5 |4 |3 |2 |1 0%
&
S
pa_h =
pa_l §_
Table 139 - Physical_Address_Structure (PAS) Field Descriptions
Offset Bits Name Description Access
00h 31:0 | pa_h Physical Address [63:32]
04h 31:12 | pa_l Physical Address [31:12]
Mellanox Technologies 193

J

12.3.3 QUERY_HCA_CAP - Query Device Capabilities

The QUERY _HCA_ CAP command returns the device limits and the capabilities supported.
Some of the device capabilities can be configured through the NVMEM attached to the adapter
device and some reflect actual HW/FW capabilities.

Table 140 - QUERY_HCA_CAP Input Structure Layout

311302928 (27(26(25(24|23|22|21|20(19(18|17|16|15|14|13/12|11(10{9 |8 |7 |6 |5 4 2|1 0%
&
opcode §
op_mod §_
(=]
oo
=
(=]
Q
=
Table 141 - QUERY_HCA_CAP Input Structure Field Descriptions
Offset | Bits Name Description Access
00h 31:16 | opcode
04h 15:0 | op_mod Bit[0] indicates Maximum or Current capabilities
0x0: Maximum
0x1: Current
Bits[15:1] indicates Capability Type
0x0: General Device Capabilities
0x1: Ethernet Offload Capabilities
0x7: NIC Flow Table Capabilities
Table 142 - QUERY_HCA_CAP Output Structure Layout
311302928 (27(26(25(24|23|22|21|20(19(18|17|16|15|14|13/12|11(10{9 |8 |7 |6 |5 4 2|1 0%
&
status =
syndrome §_
(=]
(o]
S
Q
=
capability :.E’;'
=
8
=
Table 143 - QUERY_HCA_CAP Output Structure Field Descriptions
Offset | Bits Name Description Access
00h 31:24 | status
Mellanox Technologies 194

J

Table 143 - QUERY_HCA_CAP Output Structure Field Descriptions

Offset

Bits

Name

Description

Access

04h

syndrome

10h-
100Ch

capability

Capability structure according to the op_mod.

op_mod[0:0] indicates Maximum or Current capabilities

0x0: Maximum

0x1: Current

op_mod[15:1] indicates Capability Type

0x0: General Device Capabilities. See Table 144, “HCA Capa-
bilities Layout,” on page 196.

0x1: Ethernet Offload Capabilities. See Table 146, “Per Proto-
col Networking Offload Capabilities Layout,” on page 202
0x7: NIC Flow Table Capabilities. See Table 148, “Flow Table
NIC Capabilities Layout,” on page 204

Mellanox Technologies

195

J

-

12.3.3.1 HCA Device Capabilities
Table 144 - HCA Capabilities Layout

3113012928 (27|26(25|24|23|22|21/20(19|18|17|16|15|14|13|12|11(10{9 |8 |7 |6 |5 |4 |3 |2|1|0

log_max_eq sz

log max cq sz

log_max_mkey

max_indirection

log_max_mrw_sz

log max_cq

log_max_eq

log_max_klm_list -
size

UgC|Uyc| 40T |UDI| UL Uyl [UOT [UD0-UOO0 [I9SPO

o
o
[e]
&
o «
2 2 3
- e A
5] I =
a 2o
e}
el
[¢]
E
N (%)
g 2
5
a
=
w
=
2 num_ports
3 %
i = s
8 5} lﬁ» (9%
=] z :g £
8 S 3
o o
=} —_—
o [¢]
g
[¢}
=
a3
log_max_msg max_tc g
]
z &
3 5
a
<
a
2
. [
stat_rate_support cqge_version 9
o a
g =K =
= =3 5
|H) 2] [
o — 8.. - .]o;
g g g g =
A Z lo 15
g = =])
[¢] [¢d o
3 @

Mellanox Technologies 196

J

Table 144 - HCA Capabilities Layout

3113029 |28(27/26(25(24(23]22|21/20(19(18|17|16|15|14|13|12/11|10{9 |8 |7 |6 |54 |3 |2 |1 Ocog
&
« o
£ L
o &
8 @ o g'
g
8 @ g Fg & S IS
— =
o |2 E g 3 & =
5|8 2 2 I
=} -g Q o
. g 3
2 o
G
uar_sz log pg_sz 32
bf e E_ log_bf reg size
< s
Sk =
o |8
"
W
S
=3
(%
N
=
W
e}
=
W
Q
=
N
S
=
log_max_trans- log_max_pd)
port_domain =
log_max_flow_counter_bulk max_flow_counter %
g log_max_rq log_max_sq log_max_tir log_max_tis
& =N
= 2
g .
g log_max_rmp log_max_rqt log_max_rqt_size log_max-
© _tis_per_sq
(s]
o
S, =
& 2
3
<
£
e}
¢
log_max- log_min_stride_sz log_max- log_min_stride_sz N
_stride_sz_rq 1q _stride_sz_sq _sq =
~3
log_max_wq_sz =
log_max- log_max_cur- log_max_cur- =
_vlan_list rent_mc_list rent uc list |5
(o}
S
T
0
Q
=3

Mellanox Technologies 197 J

Table 144 - HCA Capabilities Layout

_/

3130

29

28 (27

26(25|24(23(22 |21

20(19|18 (17|16 15|14 13|12|/11|10/ 9 |8 |7 |6 |5 |4 |3 |2

19SHO

log_max 12 table

log_uar page sz

device frequency mhz

UD4-UyD U84 | Urd | U0d [UOV [UD6 | U86 | Uv6 | U06

Note: Empty Access entry indicates that field is Read Only. Access Entry with RW indicates that

field is Read Write.

Table 145 - HCA Capabilities Field Descriptions

0 means only 64 byte cache line is supported.

Offset | Bits Name Description Access
18h 23:16 | log max _cq sz Log (base 2) of the Maximum CQE:s allowed in a CQ
4:0 log max_cq Log (base 2) of the Maximum number of CQs supported
1Ch 31:24 | log max_eq sz Log (base 2) of the Maximum EQEs allowed in an EQ
21:16 | log max_mkey Log (base 2) of the maximum number of data MKey entries (the num-
ber of Regions/Windows)
3:0 log_max_eq Log (base 2) of the Maximum number of EQs
20h 31:24 | max_indirection Maximum level of Mkey indirection supported
22:16 | log_max mrw sz Log (base 2) of the maximum size of a Memory Region/Window
5:0 log_max_klm_list - Log (base 2) of the Maximum indirect klm entries list (in MKey)
size
2C 31 end pad End Padding in RX messages is supported.
See Section 3.3.10, “End of Packet Padding (RX),” on page 45.
28 start pad Start Padding in RX messages is supported.
See Section 3.3.9, “Start of Packet Padding (RX),” on page 44.
27 cache line 128byte If set, 128 byte Cache line size is supported. RW

Mellanox Technologies 198

J

Table 145 - HCA Capabilities Field Descriptions

Offset | Bits Name Description Access
30h 31 reserved
30 vport_counters If set, Vport counters are supported. See Section 12.17, “Vport Count-
ers Commands,” on page 312.
34h 31 vport_group_man- Virtual port group manager. Responsible for enabling other Vports.
ager
25 nic_flow_table If set, NIC flow table mechanism is supported.
To get detailed flow table capabilities, software should query NIC flow
table cap. See Table 148, “Flow Table NIC Capabilities Layout,” on
page 204.
9:8 port_type Indicates port type
0x1: Ethernet
7:0 num_ports Number of network ports.
38h 31 reserved
28:24 | log_max_msg Log (base 2) of the maximum message size in bytes supported by the
device
19:16 | max_tc Number of Traffic Classes supported.
The device supports TCs in range 0..max_tc-1.
Value 0 indicates that 8 TCs are supported.
15 temp_warn_event If set, Temperature Warning Event is supported.
See Section 7.13.10, “HCA Interface Events,” on page 138.
3Ch 31:16 | reserved
3:0 cqe_version CQE version.
Cqe format includes different format and fields depending on cqe ver-
sion. See Table 67, “64B Completion Queue Entry Format Layout,” on
page 117.
40h 31 reserved
40h 15:14 | cmdif checksum 0x0: disabled - command interface signature is neither checked for RW
input nor for output
0x1: initial_state - command interface signature is not checked on
input, but is generated by device for output
0x3: enabled - command interface signature is both checked for input
and generated for output.
11 wq_signature WQE signature check on SQ
10 sctr_data_cqe Scatter Data to CQE supported
3 eth net offloads If set, Ethernet networking offloads are supported.

To get detailed Ethernet capabilities, software should query Ethernet
cap. See Section 12.3.3.2, “Networking Offload Capabilities,” on
page 202.

Mellanox Technologies

199

J

Table 145 - HCA Capabilities Field Descriptions

Offset | Bits Name Description Access
44h 31 cq_oi If set, cq.oi can be modified by MODIFY CQ command. See Sec-
tion 12.7.4, “MODIFY_CQ — Modify CQ Parameters,” on page 244.
30 cq_resize If set, resizing cq is enabled. See Section 7.12.6, “Resizing a CQ,” on
page 125
29 cq_moderation If set, cq moderation is enabled by MODIFY_ CQ Command. See
Table 272, “MODIFY_CQ Input Structure Layout,” on page 244
25 cq_eq_remap If set, cq.eqn can be modified by MODIFY _CQ. i.e. CQ to EQ remap-
ping is supported.
See Section 12.7.4, “MODIFY_CQ — Modify CQ Parameters,” on
page 244.
21 scqe_break modera- | Completion Event Moderation breakage by solicited CQE feature is
tion supported.
20 cq period_start - If set, cq_period _mode =1 is supported.(i.e. cq_period timer restarts
from_cqe upon completion generation).
See Table 75, “Completion Queue Context Layout,” on page 129.
48h 21:16 | uar_sz UAR Area Size = IMB * 2*uar_sz
7:0 log pg sz Log (base 2) of the minimum system page size supported.
For proper operation it must be less than or equal to the minimum page
size of the hosting platform (CPU).
4Ch 31 bf If set to ‘1’ then BlueFlame may be used
30 driver_version If set, SET_DRIVER VERSION command is supported and should be
used by the driver which performs start-up. See Section 12.3.12,
“SET_DRIVER_VERSION,” on page 218.
29 pad_tx_eth packet If set, device automatically pads Ethernet packets shorter than 64 bytes
to 64 bytes.
20:16 | log bf reg size Log (base 2) of BlueFlame max register size in bytes.
60h 31:16 | reserved
64h 28:24 | log max_trans- Log (base 2) of the maximum number of Transport Domains.
port_domain
20:16 | log_max pd Log (base 2) of the maximum number of PDs.
23:16 | log_max - Log (base 2) of the maximal number of flow counters that can be que-
68h flow_counter_bulk ried by a single QUERY_FLOW_COUNTER command.
See Table 453, “QUERY_FLOW_COUNTER Input Structure Lay-
out,” on page 302.
15:0 | max_flow_counter Maximum number of flow counters.
Mellanox Technologies 200

J

Table 145 - HCA Capabilities Field Descriptions

Offset | Bits Name Description Access
6Ch 31 modify_tis If set, MODIFY_TIS command is supported. See Section 12.9.2,
“MODIFY_TIS — Modify TIS,” on page 253.
28:24 | log_max rq Log (base2) of the number of RQ supported.
0 - feature not supported.
20:16 | log max_sq Log (base2) of the number of SQ supported. RW
0 - feature not supported.
12:8 | log_max_tir Log (base2) of the number of TIR supported.
0 - feature not supported.
4:0 log_max_tis Log (base2) of the number of TIS supported.
0 - feature not supported.
70h 31 basic_cy- 0: cyclic receive wqe always includes the 16 byte of ctrl (signature
clic rev_wqe field).
1: cyclic receive wqe includes the 16 bytes of ctrl only when
RMP.basic_cyclic_rcv_wqe is enabled.
28:24 | log_max_rmp Log (base2) of the number of RMPs supported.
0 - feature not supported.
20:16 | log max_rqt Log (base2) of the number of RQTs supported.
0 - feature not supported.
12:8 log_max_rqt_size Log (base2) of max RQT size.
4:0 log_max_tis_per_sq Log (base2) of the number of TIS supported per SQ.
74h 28:24 | log_max- Log (base2) of the maximum size (in bytes) of RQ stride.
_stride sz rq
20:16 | log min stride sz r | Log (base2) of the minimum size (in bytes) of RQ stride.
q
12:8 | log max- Log (base2) of the maximum size (in bytes) of SQ stride.
_stride_sz_sq
4:0 log min_stride sz s | Log (base2) of the minimum size (in bytes) of SQ stride.
q
78h 4:0 log_max_wq_sz Log (base 2) of the maximum number of WQEs allowed on the WQ.
7Ch 31 reserved
20:16 | log_max_vlan list Log (base2) of the maximum size of vlan list used in nic_vport_con-
text. See Table 15, “NIC_Vport Context Layout,” on page 66
12:8 | log_max_cur- Log (base2) of the maximum size of current_mc_mac_address list
rent_mc_list used in nic_vport_context. See Table 15, “NIC_Vport Context Lay-
out,” on page 66.
4:0 log_max_cur- Log (base2) of the maximum size of current uc_mac_address list used

rent_uc_list

innic_vport_context. See Table 15, “NIC_Vport Context Layout,” o

page 66.

n

Mellanox Technologies

201

J

Table 145 - HCA Capabilities Field Descriptions

Offset | Bits Name Description Access
90h 28:24 | log max 12 table Log (base2) of the maximum size of L2 Table.
See Section 12.15, “L2 TABLE COMMANDS,” on page 303.
15:0 | log uar page sz Log (base 2) of UAR page in 4Kbyte chunks. RW
98h 31:0 | device frequen- Internal device frequency given in MHz. Valid only if non-zero. See
cy_mhz Section 7.12.10, “CQE Timestamping,” on page 131.
12.3.3.2 Networking Offload Capabilities
This data structure is the output of QUERY HCA CAP to Query capabilities of Ethernet net-
works offloads. See Section 12.3.3, “QUERY_HCA CAP - Query Device Capabilities,” on
page 194. Before querying these capabilities, software must make sure that the Ethernet field in
HCA _CAP isequal to 1.
Table 146 - Per Protocol Networking Offload Capabilities Layout
31130(29(28(27|26(25|24(23|22|21({20(19|18|17|16|15|14 1312|1110/ 9|8 |7 |6 |5 |4 2|1 O%
&
|g & wqe i
= é :_: nline_
=5 | © 7]
g 12 |=|° | ” o |8 mode
SEERE 2 PR 1 . S
S e |B© 2 5 [T 5 max_lso_cap rss_ind_tbl_cap =
g |8 |8 ‘:; a | S I
S S & & g |5
2l B
& @

Iro_min_mss_size

Iro_timer supported periods[0]

lro_timer supported_periods[1]

Iro_timer supported_periods[2]

Iro_timer_supported periods[3]

UD4-H40¥ [UOE | U8E | UpE [U0E |UDT-UO0 U80 | Ur0

Mellanox Technologies

202

J

Table 147 - Per Protocol Networking Offload Capabilities Field Descriptions

Offset

Bits

Name

Description

Access

00h

31

csum_cap

Checksum Offload capability is supported

30

vlan_cap

VLAN adding and stripping offload capability is supported

29

Iro_cap

LRO hardware offload is supported

28

Iro_psh_flag

When set, the adapter supports LRO for segments with a
TCP PSH bit enabled.
Reserved when Iro_cap=0.

27

Iro_time stamp

When set, the adapter supports LRO for segments with a
TCP timestamp option.
Reserved when Iro_cap = 0.

26:25

Iro_ max_msg_sz_mode

Iro_max_message size mode reports which LRO max
message size mode the device supports.

0x0: start_from TCP_header - TIR. Iro_max_message -
size field sets max LRO IP payload size (TCP header +
TCP payload).

0x1: start_from L2 header - TIR.Iro_max_message size
field sets max LRO message size starting from L2 headers
(L2 + L3 + TCP headers + TCP payload).

Reserved when Iro_cap =0

The device allows to limit per TIR the maximum message
size LRO is allowed to aggregate. This limit can be set per
TIR via Iro_max_message_size field. See Table 44, “TIR
Context Format,” on page 84.

23

self Ib_en_modifiable

If set, self 1b_en in TIR Context is modifiable. See
Table 48, “MODIFY_TIR Bitmask,” on page 88.

22

self Ib_mc

If set, self-loopback for multicast is supported.

When self-multicast loopback is supported it can be
enabled per TIR via TIR.self Ib_en field. For more details,
See Table 44, “TIR Context Format,” on page 84.

00h

21

self 1b_uc

If set, self-loopback for unicast is supported.

When self-unicast loopback is supported, it can be enabled
per TIR via TIR.self 1b_en field. For more details, See
Table 44, “TIR Context Format,” on page 84.

20:16

max_lso_cap

Log (base2) of the maximum LSO message (TCPpayload)
supported.
0 - LSO is not supported.

13:12

wqe_inline_mode

Wqe inline mode

0: L2 - min inline mode is L2

1: nic_vport_context - min inline mode is according to
nic_vport_context configuration.

2: not_required - inline not required

rss_ind_tbl cap

Log (base2) of the maximum RSS indirection table size is
supported.
0 - RSS is not supported.

Mellanox Technologies

203

J

Table 147 - Per Protocol Networking Offload Capabilities Field Descriptions

08h 15:0 |lro_min mss_size Minimal TCP payload size required for LRO. Must be >=
1.
Reserved when Iro_cap = 0.

30h-3Ch| 31:0 |Iro_timer supported peri- |Array of supported LRO timer periods in microseconds.
ods[4] The supported timers are organized in ascending order.
When requested timer's period is N timer's expiration
period can fluctuate between N and 2N.

Reserved when Iro_cap = 0.

12.3.3.3 Flow Table Capabilities

This data structure is the output of QUERY HCA CAP to query capabilities of Flow Table. See
Section 12.3.3, “QUERY_HCA CAP — Query Device Capabilities,” on page 194.

NIC Flow Tables are supported when HCA CAP.nic flow table==1.

NIC Flow Tables capabilities are described in Table 148, “Flow Table NIC Capabilities Layout”.
Table 148 - Flow Table NIC Capabilities Layout

w
—_

simy yred pnw X1 o

sy siy yed paw X1 oru

flow table properties nic_receive
(See Table 150, “Flow Table Properties Layout,” on page 205)

flow_table properties_nic_transmit
(See Table 150, “Flow Table Properties Layout,” on page 205)

UD44-40D1 [UDET-U08T | UDET-U00T [UDA-H0D | UDL-UOY [UOE-UFO

Mellanox Technologies 204 J

Table 149 - Flow Table NIC Capabilities Field Descriptions

Offset Bits Name Description Access
00h 31 nic_rx_multi_path_tirs If set, this NIC Receive Flow Table supports multiple pro-
cessing paths for TIRs. See Section 7.11.2.4, “Multi-Pro-
cessing Paths,” on page 108
30 nic_rx_multi_path_tirs_fts |If set, this NIC Receive Flow Table supports multiple pro-
cessing paths for TIRs and Flow tables. See Sec-
tion 7.11.2.4, “Multi-Processing Paths,” on page 108
Note: Regardless of whether the destination list includes
TIRs or not, the last Flow Table in the destination list is not
required to have a level equal or greater than 64 like other
Flow Tables in the list.
40h-7Ch |512 flow_table proper- Capabilities and properties of NIC Receive Flow Tables
ties_nic_receive
(See Table 150, “Flow
Table Properties Layout,”
on page 205)
100h- [512 flow_table proper- Capabilities and properties of NIC Transmit Flow Tables
13Ch ties_nic_transmit
(See Table 150, “Flow
Table Properties Layout,”
on page 205)
Table 150 - Flow Table Properties Layout
311302928 (27(26(25(24|23|22|21/20(19(18|17|16|15|14|13/12|11(10[{9 |8 |7 |6 |5 | 4 2|1 0_%
[¢]
= Ef
LEEEES :
2 |2 a e B 8
EZ L EBEEIRIE 2 =
SEEELEE 5 s
SR 2REEE o
- g le [|z |8 g,
= £
(¢} —

log_max_ft size

max_ft level

log_max_ft num

log_max_flow_counter

log_max_destination

log max_flow

ft_field support

(See Table 152, “Flow Table Fields Supported Format,” on page 207)

UDZ-U0T (UOT| UL | Uil | UOT [UDO0 | U80 | Ur0

Mellanox Technologies

205

Table 150 - Flow Table Properties Layout

311302928 (27(26(25(24|23|22|21|20(19(18|17|16|15|14|13/12|11(10{9 |8 |7 |6 |5 | 4 2|1 O%
&
ft_field bitmask_support =
(See Table 152, “Flow Table Fields Supported Format,” on page 207) %
=
Table 151 - Flow Table Properties Field Descriptions
Offset Bits Name Description Access
00h 31 ft_support When set, this Flow Table type is supported.
30 flow_tag If set, indicates that flow_tag which is reported in cqe is
supported for this type flow table.
29 flow_counter When set, this Flow Table type supports associating flow
counters to its flows.
28 flow_modify _en When set, this Flow Table type supports modifying flow
entries. See Section 7.11.3.7, “Redefining a Flow,” on
page 112.
27 modify root When set, this Flow Table type supports dynamic modifi-
cation of the root Flow Table.
26 identified_miss_table If set, forward to identified miss table when creating new
flow table is supported.
See Table 12.14.1, “CREATE_FLOW_TABLE - Allocate
a New Flow Table,” on page 277.
25 flow_table modify If set, MODIFY_FLOW_TABLE is supported.
See Section 12.14.2, “MODIFY_FLOW_TABLE - Mod-
ify a Flow Table,” on page 279.
22 reset_root_to_default If set, indicates if reset root table to default behavior is sup-
ported.
See Table 398, “SET FLOW_TABLE ROOT - Input
Structure Field Descriptions,” on page 282
04h 29:24 |log max_ft size Log (base2) of the Flow Table size
7:0 max_ft level Maximal value for the Flow Table level
08h 31:0 reserved
0Ch 7:0 log max_ft num Log (base 2) of the number of Flow Tables supported for
this type
10h 15:8 log_max_flow_counter Log (base 2) of the maximal number of flow counters in a
single flow with Count action.
7:0 log_max_destination Log (base 2) of the maximal number of destinations in a
single Flow with Forward action
14h 7:0 log_max_flow Log (base 2) of the total number of flows supported for this
type. The number of flows is the total over all Flow Tables
of this type.
Mellanox Technologies 206

J

Table 151 - Flow Table Properties Field Descriptions

Offset Bits Name Description Access
20h-2Ch | 128 ft_field support Bit per flow table header field support.
(See Table 152, “Flow
Table Fields Supported
Format,” on page 207)
30h-3Ch| 128 |ft field bitmask support |Bit per flow table header field bitmask support.
(See Table 152, “Flow
Table Fields Supported
Format,” on page 207)
Table 152 specifies which fields are supported in the Flow Table.
Table 152 - Flow Table Fields Supported Format
31(30(29|28|27(26|25|24(23|22|21({20/19|18 (1716|1514 |13|12|11|10|9 |8 |7 |6 |54 |3 1 0%
v
[¢]
2
2 = o 2 2 g ‘E 2 e 12 g |e |eo
o lo |7 Egﬁ g |z |3 |- OE@@Q%EEE
2 g |7 g |8 |8 SRR RELCEIRSEB|IRE S
g8 e | x| ekl EERELIE|EIIEI S
clelg| EEE|l EEEIzL LR FFEREREEE =
g8 B |~ - e B assoﬂ.&g’a@gmamam
BREl Bl cRhEFFTFREELEREERE
Rl PFPFF| ERERE SITPRERREP
(<]
(=3
aQ
=
Mellanox Technologies 207

J

Flow Table Field Bitmask fields descriptions are shown in Table 153.

Table 153 - Flow Table Fields Supported Fields

Offset Bits Name Description
00h 31 outer_dmac
30 outer smac
29 outer ether type
27 outer first prio
26 outer_first_cfi
25 outer_first vid
23 outer_second prio
22 outer_second cfi
21 outer_second_vid
20 outer ipv6_flow label
19 outer_sip
18 outer_dip
17 outer frag
16 outer_ip_protocol
15 outer ip_ecn
14 outer ip dscp
13 outer_udp_sport
12 outer_udp_dport
11 outer_tcp sport
10 outer tcp dport
9 outer tcp flags

12.3.4 SET_HCA_CAP - Set Device Capabilities

The SET HCA CAP command defines the device limitations and capabilities supported. Since
modifying some capabilities affects resources required during INIT HCA, this command must
be run prior to initial QUERY PAGES command.

Table 154 - SET_HCA_CAP Input Structure Layout

31130(29(28(27|26(25(2423(22(21|20(19[18|17|16(15|14|13 (1211|109 (8 |7 |6 |5 |4 2|1 »;Og
&
opcode §
op_mod §_
(=}
o0
=
Mellanox Technologies 208

J

Table 154 - SET_HCA_CAP Input Structure Layout

31(30(29(28(27|26(25|24|23|22|21/20|19|18|17|16|15/14|13|12[11|10{ 9 |8 |7 |6 |5|4 (3|2 |1 O%
&
(=3
Q
=
capability E.:
S
(=3
O
=
Table 155 - SET_HCA_CAP Input Structure Field Descriptions
Offset | Bits Name Description Access
00h 31:16 |opcode
04h 15:0 op_mod Bit[0]: Reserved.
Bits[15:1] Indicates Capability Type
0x0: General Device Capabilities
0x1: Ethernet Offload Capabilities
0x7: NIC Flow Table
10h- 32768 |capability Capability structure according to the op_mod.
100Ch op_mod[0:0] Indicates Maximum or Current capabilities
0x0: Maximum
0x1: Current
op_mod[15:1] Indicates Capability Type
0x0: General Device Capabilities. See Table 144, “HCA Capabil-
ities Layout,” on page 196.
0x1: Ethernet Oftload Capabilities.
Table 156 - SET_HCA_CAP Output Structure Layout
31(30(29(28(27|26(25|24|23|22|21/20|19|18|17|16|15/14|13|12[11|10[9 |8 |7 |6 |5|4 (3|2 |1 O%
&
(=3
status =
d £
syndrome L
(=}
o0
S
Q
=
Table 157 - SET_HCA_CAP Output Structure Field Descriptions
Offset | Bits Name Description Access
00h 31:24 |status
04h 31:0 syndrome
Mellanox Technologies 209

J

12.3.5

Table 157 - SET_HCA_CAP Output Structure Field Descriptions

Offset | Bits Name Description Access
08h- 64 reserved
0Ch

QUERY_ADAPTER - Query Adapter

The QUERY_ADAPTER command retrieves adapter specific parameters. This information is
used by the driver in order to clear interrupt signaling by the device (for more details, see clr_int
in Table 7, “Initialization Segment,” on page 48). The data returned in the output mailbox is sum-
marized in Table 162, “QUERY_ADAPTER Parameters Block Layout" on page 211.

Table 158 - QUERY_ADAPTER Input Structure Layout

31(30(29(28(27|26(25|24|23|22|21/20|19|18|17|16|15(14|13|12[11|10[9 |8 |7 |6 |5|4 (3|2 |1 0%
&
S
opcode =
op_mod §
(=}
o0
=
S
Q
=
Table 159 - QUERY_ADAPTER Input Structure Field Descriptions
Offset | Bits Name Description Access

00h 31:16 |opcode

04h 15:0 op_mod

08h- 64 reserved
0Ch

Table 160 - QUERY_ADAPTER Output Structure Layout

31130(29(28(27|26|25|24|23|22|21(20(19|18|17|16|15|14|13|12|11(10|/9 (8|7 |6 (5|43 2|10

status

syndrome

query_adapter struct
(See Table 162, “QUERY_ADAPTER Parameters Block Layout,” on page 211)

UD0T-HOT |UD0-80 | U¥0 | UOO [PSPHO

Mellanox Technologies 210

J

Table 161 - QUERY_ADAPTER Output Structure Field Descriptions

Offset | Bits Name Description Access
00h 31:24 |status
04h 31:0 syndrome
10h- 2048 query_adapter struct
10Ch (See Table 162, “QUE-
RY_ADAPTER Parameters
Block Layout,” on
page 211)
Table 162 - QUERY_ADAPTER Parameters Block Layout
311302928 (27(26(25(24|23|22|21|20(19(18|17|16|15|14|13|12|11(10{9 |8 |7 |6 |5 |4 |3 |2|1|0

ieee_vendor _id

vsd_vendor _id

vsd

vsd_contd psid

UD4-40d | UDH-UOT [UDT [U8T | Ul | UOT | YD0-UO0O |3°SPO

Table 163 - QUERY_ADAPTER Parameters Block Field Descriptions (Sheet 1 of 2)

Offset | Bits Name Description Access
18h 23:0 |ieee vendor id IEEE vendor _id.
Supported only starting from ISSI==1.
1Ch 15:0 |vsd_vendor_id PCISIG Vendor ID (www.pcisig.com/membership/vid_search) of the
vendor specifying/formatting the VSD.
The vsd_vendor id identifies the management domain of the vsd/psid
data. Different vendors may choose different vsd/psid format and encod-
ing as long as they use their assigned vsd_vendor _id.
The psid format as described below is used in conjunction with Mellanox
vsd_vendor_id (15B3h).
20h- 1664 |vsd Vendor Specific Data. The VSD string that is burnt to the Flash with the
ECh Firmware.
Mellanox Technologies 211

J

Table 163 - QUERY_ADAPTER Parameters Block Field Descriptions (Sheet 2 of 2)

Offset | Bits Name Description Access
FOh- 128 |vsd contd_psid This field carries the last sixteen bytes of the VSD field.
FCh For Mellanox formatted VSD (vsd_vendor_id=15B3h) the last 16 bytes
of VSD are used as PSID.
The PSID field is a 16-ascii (byte) character string which acts as an HCA
Adapter Card ID. The format of the PSID is as follows:
Vendor Symbol (VS) - 3 characters
Board Type Symbol (BT) - 3 characters
Board Version Symbol (BV) - 3 characters
Parameter Set Number (PS) - 4 characters
Reserved (R) - 3 characters (filled with zeros)
The various characters are organized as described in See Table 164,
“PSID Character Offsets (Example is in Parentheses),” on page 212.
Example: A PSID for Mellanox’s MHXL-CF128-T HCA board is
MT_0030000001, where:
MT _is the Mellanox Vendor Symbol
003 is the MHXL-CF128-T Board Type Symbol
000 is the Board Version Symbol
0001 is the Parameter Set Number
The byte order is as follows:
Bits 31:24 at offset 0 represent the first character (byte), bits 23:16 - sec-
ond character, etc.
Bits 31:24 at offset 4 represent the fourth character, etc.
Table 164 - PSID Character Offsets (Example is in Parentheses)
000FO0h 000F1h 000F2h 000F3h
VS1 VS2 VS3 BT1
(M) (T) (‘3)
000F4h 000F5h 000F6h 000F7h
BT2 BT3 BV1 BV2
(ﬂO’) (ﬂO’) (ﬂO’) (ﬂO’)
000F8h 000F9h 000FAh 000FBh
BV3 PS1 PS2 PS3
(07 (‘17 (07 (0%
000FCh 000FDh 000FEh 000FFh
PS4 R1 R2 R3
(‘0" (00000000b) (00000000b) (00000000b)
Mellanox Technologies 212

J

-

12.3.6 INIT_HCA —INIT HCA

12.3.7

This command initiates and opens the HCA.
Table 165 - INIT_HCA Input Structure Layout

31(30(29(28(27(26|25(24(23(22|21(20(19|18|17|16|15|14|13[12|11|10|9 (8 |7 |6 |5 | 4 21 0%
&
opcode ga
op_mod §
2
(=n
S
a
(=n
Table 166 - INIT_HCA Input Structure Field Descriptions
Offset | Bits Name Description Access
00h 31:16 |opcode
04h 15:0 op_mod
08-0Ch |31:0 reserved
Table 167 - INIT_HCA Output Structure Layout
31130(29(28(27|26(25(2423(22(21|20(19[18|17|16(15|14|13 (1211|109 (8 |7 |6 |5 | 4 2|1 0%
&
status =
S
syndrome <
(=n
R
S
a
=
Table 168 - INIT_HCA Output Structure Field Descriptions
Offset | Bits Name Description Access
00h 31:24 |status
04h 31:0 syndrome
08h- 64 reserved
0Ch
TEARDOWN_HCA - Tear-down HCA
The command has two flavors:
* Graceful Close — The command releases all HCA allocated resources. The command
will stop further execution of descriptors. It is the responsibility of the software to close
all SQs/RQs, CQs and EQs and to unmap all the EQs, prior to executing the TEAR-
DOWN_HCA command.
Mellanox Technologies 213

J

* Panic Close — This command is executed by the software when it detects an internal

error. Upon execution of this command the HCA does the following:

Stops access to the Uplink bus as a bus master.

Moves the network ports to the Link down state.

After executing the close HCA in Panic flavor, DoorBells will still be consumed by the HCA,
and they will be silently dropped.

Table 169 - TEARDOWN_HCA Input Structure Layout

311302928 (27(26(25(24(23|22|21|20(19(18|17|16|15|14|13|12/11|10({9 |8 |7 | 6 2|1 0%
&
S
opcode =
op_mod §_
profile g;g
(=]
Q
=
Table 170 - TEARDOWN_HCA Input Structure Field Descriptions
Offset | Bits Name Description Access
00h 31:16 |opcode
04h 15:0 op_mod
08h 15:0 profile 0: Graceful_close
1: Panic_close
0Ch 31:0 reserved
Table 171 - TEARDOWN_HCA Output Structure Layout
311302928 (27(26(25(24(23|22|21|20(19(18|17|16|15|14|13|12/11|10{9 |8 |7 | 6 2|1 0%
&
(=)
status =]
(=)
syndrome e
=
()
[e2e]
S
@
=
Table 172 - TEARDOWN_HCA Output Structure Field Descriptions
Offset | Bits Name Description Access
00h 31:24 |status
04h 31:0 syndrome
08h- 64 reserved
0Ch
Mellanox Technologies 214

J

4 N

12.3.8 ENABLE_HCA

This command must be used during driver start-up as described in Section 11.2, “HCA Driver
Start-up,” on page 366.

Table 173 - ENABLE_HCA Input Structure Layout

31[30(29|28|27(26(25|24|23|22(21|20|19(18|17|16|15(14|13|12|11|10{9 |8 |7 |6 |5 |4 |3 |21 0%
&
(=)
opcode S
op_mod :%
&
=
S
Q
=
Table 174 - ENABLE_HCA Input Structure Field Descriptions
Offset | Bits Name Description Access
00h 31:16 |opcode
04h 15:0 op_mod
Table 175 - ENABLE_HCA Output Structure Layout
31130(29(28(27|26(25(2423(22(21|20(19|18|17|16|15|14|13 (1211|109 (8 |7 |6 |5 |4 |3 |2 |1 0%
&
status S
syndrome §
(e}
(o]
=
Table 176 - ENABLE_HCA Output Structure Field Descriptions
Offset | Bits Name Description Access
00h 31:24 |status
04h 31:0 syndrome
08h 31:0 reserved
12.3.9 DISABLE_HCA
This command must be used during driver teardown as described in Section 11.2, “HCA Driver
Start-up,” on page 366.
Table 177 - DISABLE_HCA Input Structure Layout
31130(29(28(27|26(25(24|23(22|21|20(19|18|17|16|15|14|13 (1211|109 (8 |7 |6 |5 |4 |3 |2 |1 0%
&
opcode §
op_mod §

K Mellanox Technologies 215 J

Table 177 - DISABLE_HCA Input Structure Layout

3130|2928 (27(26(25(24(23|22|21|20(19[18|17|16|15|14|13|12|11|10{9 |8 |7 |6 |5 | 4 2|1 0%
&
(e}
(o]
=
S
Q
=
Table 178 - DISABLE_HCA Input Structure Field Descriptions
Offset | Bits Name Description Access
00h 31:16 |opcode
04h 15:0 op_mod
Table 179 - DISABLE_HCA Output Structure Layout
3130|2928 (27(26(25(24(23|22|21|20(19[18[17|16|15|14|13|12|11(10{9 |8 |7 |6 |5 |4 2|1 0%
&
S
status =
syndrome §_
2
=
Table 180 - DISABLE_HCA Output Structure Field Descriptions
Offset | Bits Name Description Access
00h 31:24 |status
04h 31:0 syndrome
08h 31:0 reserved

12.3.10 QUERY_ISSI

This command is used to query the supported Interface Step Sequence ID. If this command
returns a “BAD_OPCODE?”, it indicates that only ISSI = 0 is supported.

SW must use this command to query the SUPPORTED _ISSI, and then use the SET ISSI com-
mand to set the actual ISSI it prefers to run with, which should be the minimum between its ISSI
and the maximum supported_issi of the device. See Section 7.1, “ISSI - Interface Step Sequence
ID,” on page 62.
Table 181 - QUERY_ISSI Input Structure Layout

31130(29(28(27|26(|25|24(23|22|21({20(19|18|17|16|15|14 1312|1110/, 9|8 |7 |6 |5 |4 2|1 0%
&
S
opcode =]
op_mod §
Mellanox Technologies 216

J

Table 181 - QUERY_ISSI Input Structure Layout

31(30(29(28(27|26(25|24|23|22|21|20|19|18|17|16|15/14|13|12|11|10| 9 |8 |7 |6 |54 3|2 |1]|0

UD0-U80 | 1°sJFO

Table 182 - QUERY_ISSI Input Structure Field Descriptions

Offset | Bits Name Description Access

00h 31:16 |opcode

04h 15:0 op_mod

Table 183 - QUERY_ISSI Output Structure Layout

31130(29(28(27|26(|25|24(23|22|21(20(19|18|17|16|15|14|13|12(11(10/9 |8 |7 |6 |54 (3|2 1|0

status

syndrome

current_issi

supported_issi

UD9-40T | D1-UD0 | U80 | U¥0 | HOO [3SHO

Table 184 - QUERY_ISSI Output Structure Field Descriptions

Offset | Bits Name Description Access

00h 31:24 |status

04h 31:0 syndrome

08h 15:0 current_issi Current Interface Step Sequence ID.

Can be changed using SET_ISSI command.
20h- 640 supported_issi A bitmask field indicates which ISSI is supported by the device:
6Ch Bit 0: indicates if [ISSI =0 supported.

Bit 1: indicates if ISSI =1 supported.
Bit 2: indicates if [ISSI =2 supported.
Bit N: indicates if ISSI =N supported.

Mellanox Technologies 217 J

12.3.11 SET_ISSI
Table 185 - SET_ISSI Input Structure Layout

31(30(29(28(27|26(25|24|23|22|21/20|19|18|17|16|15/14|13|12/11|{10{ 9 |8 |7 |6 |54 |3 |2 |1|0

opcode

op_mod

current_issi

UD0[U80 | U0 [HOO |I°SPHO

Table 186 - SET_ISSI Input Structure Field Descriptions

Offset | Bits Name Description Access

00h 31:16 |opcode

04h 15:0 op_mod

08h 15:0 current_issi Current Interface Step Sequence ID to work with.
It is recommended to set it to min (my issi, max device support-
ed_issi)

Table 187 - SET_ISSI Output Structure Layout

31130(29(28(27|26|25|24|23|22|21(20({19|18|17|16|15|14|13|12|11(10|9 |8 |7 |6 (5|43 |2|1|0

status

syndrome

UD0-U80 | Ur0 | HOO [3°SHO

Table 188 - SET_ISSI Output Structure Field Descriptions

Offset | Bits Name Description Access

00h 31:24 |status

04h 31:0 syndrome

12.3.12 SET_DRIVER_VERSION

This command is used to set the version of driver which performs start-up over the device.

When HCA CAP.driver version==1, the driver which performs start-up should set its version
using this command in this stage as indicated in Section 11.2, “HCA Driver Start-up,” on
page 366.

Mellanox Technologies 218 J

Table 189 - SET_DRIVER_VERSION Input Structure Layout

31(30

292827

26(25(24|23(22

21

20

19

1817(16(15/14|13|12|{11|10{ 9 (8 |7 |6 | 5|4 |3

opcode

op_mod

driver_version

UDH-UOT [UD0-U80 | U0 | U0O [I9SHO

Table 190 - SET_DRIVER_VERSION Input Structure Field Descriptions

Offset | Bits Name Description Access
00h 31:16 |opcode
04h 15:0 op_mod
10h- 512 driver_version The Driver version string is a concatenation of 3 fields separated
4Ch by “,”:
* OS_name - generic string
* Driver name - Generic string
* Driver version_number - Concatenation of 3 numbers sepa-
rated by “.”:
* Main_version - 3 digits (no need for leading zeros)
* Minor version - 3 digits (mandatory leading zeros)
* Sub_minor version - 6 digits (mandatory leading zeros)
The order of the fields is from left (first - OS_name) to right (last
- Sub_minor_version) The total length of the driver_version is
limited to 64 Bytes (including the end-of-string symbol).
Table 191 - SET_DRIVER_VERSION Output Structure Layout
3113029 |28(27/26(25(24(23]22|21|20(19(18|17|16|15|14|13|12/11|10{9 |8 |7 |6 |54 |3 |2 |1 O%
&
S
status =
syndrome §
()
(o]
=
S
Q
=
Table 192 - SET_DRIVER_VERSION Output Structure Field Descriptions
Offset | Bits Name Description Access
00h 31:24 |status
04h 31:0 syndrome
Mellanox Technologies 219

J

12.3.13 ALLOC_PD - Allocate Protection Domain
Table 193 - ALLOC_PD Input Structure Layout

3130|2928 (27(26(25(24(23|22|21|20(19[18[17[16|15|14|13|12/11|10{9 [8 |7 |6 |5 |4 |3 |2 |1 Ocog
&
(=)
opcode S
op_mod :%
S
o0
=
S
a
=
Table 194 - ALLOC_PD Input Structure Field Descriptions
Offset | Bits Name Description Access
00h 31:16 |opcode
04h 15:0 op_mod
08h- 64 reserved
0Ch
Table 195 - ALLOC_PD Output Structure Layout
31130(29(28(27|26(25(24|23(22|21|20(19|18|17|16|15|14|13 (1211|109 (8 |7 |6 |5 |4 |3 |2 |1 0%
&
status S
syndrome §
()
pd &
(=3
@
=

Table 196 - ALLOC_PD Output Structure Field Descriptions

Offset | Bits Name Description Access

00h 31:24 |status

04h 31:0 syndrome

08h 23:0 pd Protection Domain

0Ch 31:0 reserved

Mellanox Technologies 220 J

12.3.14 DEALLOC_PD - De-Allocate Protection Domain
Table 197 - DEALLOC_PD Input Structure Layout

3113029 |28(27/26(25(24(23]22|21|20(19(18|17|16|15|14|13|12/11|10{9 |8 |7 |6 |54 |3 |2 |1 Ocog
&
(=)
opcode S
op_mod :%
(=}
pd 2
(=3
Q
=
Table 198 - DEALLOC_PD Input Structure Field Descriptions
Offset | Bits Name Description Access
00h 31:16 |opcode
04h 15:0 op_mod
08h 23:0 pd Protection Domain
0Ch 31:0 reserved
Table 199 - DEALLOC_PD Output Structure Layout
3113029 |28(27/26(25(24(23]22|21/20(19(18|17|16|15|14|13|12/11|10{9 |8 |7 |6 |54 |3 |2 |1 0%
&
(=)
status =]
(=)
syndrome e
=
()
(o]
=
S
Q
=

Table 200 - DEALLOC_PD Output Structure Field Descriptions

Offset | Bits Name Description Access

00h 31:24 |status

04h 31:0 syndrome

08h- 64 reserved
0Ch

Mellanox Technologies 221 J

12.3.15 ALLOC_UAR - Allocate UAR
Table 201 - ALLOC_UAR Input Structure Layout

3130|2928 (27(26(25(24(23|22|21|20(19[18[17[16|15|14|13|12/11|10{9 [8 |7 |6 |5 |4 |3 |2 |1 0%
&
(=)
opcode S
op_mod :%
(=}
o0
=
S
a
=
Table 202 - ALLOC_UAR Input Structure Field Descriptions
Offset | Bits Name Description Access
00h 31:16 |opcode
04h 15:0 op_mod
08h- 64 reserved
0Ch
Table 203 - ALLOC_UAR Output Structure Layout
31130(29(28(27|26(25(24|23(22|21|20(19|18|17|16|15|14|13 (1211|109 (8 |7 |6 |5 |4 |3 |2 |1 O%
&
status S
(=3
syndrome g
=
2
uar %
(=3
Q
=

Table 204 - ALLOC_UAR Output Structure Field Descriptions

Offset | Bits Name Description Access

00h 31:24 |status

04h 31:0 syndrome

08h 23:0 uar UAR

0Ch 31:0 reserved

Mellanox Technologies 222 J

12.3.16 DEALLOC_UAR - De-Allocate UAR
Table 205 - DEALLOC_UAR Input Structure Layout

3130|2928 (27(26(25(24(23|22|21|20(19[18[17[16|15|14|13|12/11|10{9 [8 |7 |6 |5 |4 |3 |2 |1 Ocog
&
(=)
opcode S
op_mod :%
uar §
S
Q
=
Table 206 - DEALLOC_UAR Input Structure Field Descriptions
Offset | Bits Name Description Access
00h 31:16 |opcode
04h 15:0 op_mod
08h 23:0 uar UAR
0Ch 31:0 reserved
Table 207 - DEALLOC_UAR Output Structure Layout
3130|2928 (27(26(25(24(23]22|21|20(19[18[17[16|15|14|13|12/11|10{9 |8 |7 |6 |5 |4 |3 |2 |1 0%
&
S
status =
syndrome §
=
S
(o]
=
3
=

Table 208 - DEALLOC_UAR Output Structure Field Descriptions

Offset | Bits Name Description Access

00h 31:24 |status

04h 31:0 syndrome

08h- 64 reserved
0Ch

Mellanox Technologies 223 J

12.3.17 CONFIG_INT_MODERATION - Configure Interrupt Moderation

The command sets a maximal interrupt frequency. When MSI-X is enabled, the setting is per
MSI-X vector. When MSI-X is disabled, the setting is for the PCle interrupt pin emulation (INT
message).
Table 209 - CONFIG_INT_MODERATION Input Structure Layout

31(30(29(28(27|26(25|24|23|22|21/20|19|18|17|16|15/14|13|12[11|10[9 |8 |7 |6 |5|4 (3|2 |1 0%
&
S
opcode =]
op_mod §_
min_delay int_vector g;g
(=]
Q
=
Table 210 - CONFIG_INT_MODERATION Input Structure Field Descriptions
Offset | Bits Name Description Access
00h 31:16 |opcode
04h 15:0 op_mod 0: write
1: read
08h 27:16 |min_delay Minimal interval (in multiples of lusec) between interrupts
15:0 int_vector If MSI-X is enabled, this field holds the MSI-X vector.
Otherwise, this field is reserved.
0Ch 31:0 reserved
Table 211 - CONFIG_INT_MODERATION Output Structure Layout
31(30(29(28(27|26(25|24|23|22|21/20|19|18|17|16|15/14|13|12[11|10{ 9 |8 |7 |6 |5|4 (3|2 |1 0%
&
(=)
status =]
(=)
syndrome e
=
min_delay int_vector Oo:g
(=3
@
=

Table 212 - CONFIG_INT_MODERATION Output Structure Field Descriptions

Offset | Bits Name Description Access
00h 31:24 |status
04h 31:0 syndrome

Mellanox Technologies 224

J

Table 212 - CONFIG_INT_MODERATION Output Structure Field Descriptions

Offset | Bits Name Description Access
08h 27:16 |min_delay Minimal interval (in multiples of lusec) between interrupts
15:0 int_vector If MSI-X is enabled, this field holds the MSI-X vector.
Otherwise, this field is reserved.
0Ch 31:0 reserved
12.3.18 ALLOC_TRANSPORT_DOMAIN - Allocate Transport Domain
Table 213 - ALLOC_TRANSPORT_DOMAIN Input Structure Layout
31(30(29|28|27(26|25|24|23|22(21(20|19|18|17|16|15(14|13|12|11|10|9 (8 |7 |6 |5 |4 211 0%
&
opcode §
op_mod §_
2
T
(=3
Q
=
Table 214 - ALLOC_TRANSPORT_DOMAIN Input Structure Field Descriptions
Offset | Bits Name Description Access
00h 31:16 |opcode
04h 15:0 op_mod
08h- 64 reserved
0Ch
Table 215 - ALLOC_TRANSPORT_DOMAIN Output Structure Layout
31130(29(28(27|26(25(24|23(22(21|20(19[18|17|16|15|14|13 1211|109 (8 |7 |6 |5 |4 2|1 0%
&
status S
d ()
syndrome &
transport_domain oo:g
(=3
Q
=
Table 216 - ALLOC_TRANSPORT_DOMAIN Output Structure Field Descriptions
Offset | Bits Name Description Access
00h 31:24 |status
04h 31:0 syndrome
Mellanox Technologies 225

J

Table 216 - ALLOC_TRANSPORT_DOMAIN Output Structure Field Descriptions

Offset | Bits Name Description Access
08h 23:0 transport_domain Transport Domain ID
0Ch 31:0 reserved
12.3.19 DEALLOC_TRANSPORT_DOMAIN - De-Allocate Transport Domain
Table 217 - DEALLOC_TRANSPORT_DOMAIN Input Structure Layout
311302928 (27(26(25(24|23|22|21/20(19(18|17|16|15|14|13/12|11(10{9 |8 |7 |6 |5 4 2|1 0%
&
opcode §_
op_mod §
transport_domain g;g
(=]
Q
=
Table 218 - DEALLOC_TRANSPORT_DOMAIN Input Structure Field Descriptions
Offset | Bits Name Description Access
00h 31:16 |opcode
04h 15:0 op_mod
08h 23:0 transport_domain Transport Domain ID.
0Ch 31:0 reserved
Table 219 - DEALLOC_TRANSPORT_DOMAIN Output Structure Layout
311302928 (27(26(25(24|23|22|21|20(19(18|17|16|15|14|13/12|11(10[{9 |8 |7 |6 |5 4 2|1 0%
&
status =
S
syndrome <
=
(=]
=
S
2
Table 220 - DEALLOC_TRANSPORT_DOMAIN Output Structure Field Descriptions
Offset | Bits Name Description Access
00h 31:24 |status
04h 31:0 syndrome
08h- 64 reserved
0Ch
Mellanox Technologies 226

J

12.4 Registers Access Commands

12.4.1 ACCESS_REGISTER

The ACCESS_REGISTER command is used by the driver to access registers for chip configura-
tion, etc.

Table 221 - ACCESS_REGISTER Input Structure Layout

31(30(29(28(27|26(25|24|23|22|21/20|19|18|17|16|15/14|13|12|11|10| 9 |8 |7 |6 |54 |3 |2 |1|0

opcode

op_mod

register_id

argument

register data[0]

U1 | HOT [UDO0 | Y80 | U0 | 00 [IPSPO

register data[1]

Table 222 - ACCESS_REGISTER Input Structure Field Descriptions

Offset | Bits Name Description Access

00h 31:16 |opcode

04h 15:0 op_mod Opcode modifier
0: WRITE
1: READ
08h 15:0 register_id ID of the register being accessed
0Ch 31:0 argument The meaning of this field is defined per register id
10h-... [31:0 register datal...] For write - register data

For read - reserved

Table 223 - ACCESS_REGISTER Output Structure Layout

31130(29(28(27|26|25|24|23|22|21(20(19|18|17|16|15|14|13|12(11(10/9 |8 |7 |6 |54 (3|2 1|0

e

174

<

status S
()

syndrome £

()

®

(=3

@

=

register data[0] :o:
register data[1] 5

Mellanox Technologies 227 J

12.5

12.5.1

Table 224 - ACCESS_REGISTER Output Structure Field Descriptions

Offset | Bits Name Description Access
00h 31:24 |status

04h 31:0 syndrome

08h- 31:0 reserved

0Ch

10h-... [31:0 register data]...] For write - reserved

For read - register data

TPT Commands

TPT commands initialize and configure address translation and protection structures required for

the HCA.

To register a Memory Region, software should allocate and configure MKey context by posting
ALLOC MKEY command, passing MKey parameters and in return receiving MKey handle
(number) assigned by HW. To de-register a Memory Region, software should use the DEAL-
LOC_MKEY command on the appropriate MKey handle. It is recommended that, prior to releas-
ing a Memory Region, software will deallocate indirect memory regions pointing to it.

The following are the commands affecting the Translation and Protection (TPT) mechanism and
its Memory Protection Table (MKey).

Table 225 - TPT Commands

has been executed, accesses to this
key will result in an access fault.

Mnemonic Command Description Reference
CREATE _MKEY Create MKey entry Generates new MKey Section 12.5.1, on
page 228
QUERY_MKEY Query MKey entry Gets a snapshot of MKey context. Section 12.5.2, on
page 230
DESTROY_ MKEY Destroy MKey entry Destroy MKey. After this command | Section 12.5.3, on

page 232

QUERY_SPECIAL -
CONTEXTS

Query special con-
text numbers

Returns a context number to be used
for special purposes

Section 12.5.4, on
page 233

CREATE_MKEY - Create MKey Entry

The CREATE MKEY command generates new MKeys. The context of the new MKey object is
taken from the input mailbox. HW provides an MKey index as an output parameter. This index
will be used by SW as a handle when accessing this object.

Table 226 - CREATE_MKEY Input Structure Layout

31(30(29 (28|27 |26

25

24|23|22|21|20

19

18(17(16|15

opcode

Y00 | 19O

Mellanox Technologies

228

J

Table 226 - CREATE_MKEY Input Structure Layout

_/

ssoooe gd

memory key mkey entry
(See Table 9, “MKey Context Format,” on page 58)

480 | Up0 (39SPFO

translations_octword_actual_size

klm / pas/mtt[0]

UD9-U89 | Ur9 | H09 | UOS-U8S |UyS-u0s | UDv-UOT

klm / pas/mtt[1]

UrIT 40Tl |UD01-U0L

Table 227 - CREATE_MKEY Input Structure Field Descriptions

00h 31:16 |opcode
04h 15:0 op_mod
0Ch 31 pg_access Per-page access rights. If set, the wr_en and rd_en fields of pro-
vided translation entries are valid and must specify the desired
access rights.
Can be set only when access mode==MTT.
10h-4Ch 512 memory key mkey entry (| MKey context.
See Table 9, “MKey Con-
text Format,” on page 58)
60h 31:0 translations_octword_actu- | Actual number of octwords that contain translation entries. Can
al_size be 0 if no KLMs/MTTs are delivered.
110h-... [31:0 klm / pas/mitt][...] Translation entries and BSFs.

Mellanox Technologies

J

Table 228 - CREATE_MKEY Output Structure Layout

31130(29(28(27|26(25(24|23(22|21|20(19|18|17|16|15|14|13 (1211|109 (8 |7 |6 |5 |4 |3 |2 |1 0%
&
status =
syndrome §
=
mkey_index g;g
(=]
a
=
Table 229 - CREATE_MKEY Output Structure Field Descriptions
Offset | Bits Name Description Access
00h 31:24 |status
04h 31:0 syndrome
08h 23:0 mkey index MKey index
0Ch 31:0 reserved
12.5.2 QUERY_MKEY - Query MKey Entry
The QUERY_MKEY command requests a snapshot of an MKEY entry. The command takes the
current state of an MKEY entry and stores it in the output mailbox. The command will fail if the
requested MKey entry is invalid. The command also stores in the output mailbox the KLMs/PAs
or the BSFs as selected using the opcode modifier field below. The command will fill the pages
provided by the software up to the mailbox size.
Table 230 - QUERY_MKEY Input Structure Layout
31130(29(28(27|26(25(2423(22(21|20(19|18|17|16|15|14|13 (1211|109 (8 |7 |6 |5 |4 |3 |2 |1 Ocog
&
opcode §
op_mod §
mkey_index §g
=]
el
g 8
S =3
Table 231 - QUERY_MKEY Input Structure Field Descriptions
Offset | Bits Name Description Access
00h 31:16 |opcode
04h 15:0 op_mod 0x0: PAS_KLMs - QUERY returns PAS/KLMs
0x2: BSFs - QUERY returns BSFs
08h 23:0 mkey_index MKey index
Mellanox Technologies 230

J

Table 231 - QUERY_MKEY Input Structure Field Descriptions

Offset | Bits Name Description Access

0Ch 31 pg_access Per-page access rights. If set, the wr_en and rd_en fields of pro-
vided translation entries are valid and return the current rights.
Can be set only if Mkey created with pg_access ==1.

Table 232 - QUERY_MKEY Output Structure Layout

31130(29(28(27|26(|25|24(23|22|21(20(19|18|17|16|15|14|13|12(11(10/9 |8 |7 |6 |54 (3|2 /1|0

status

syndrome

memory key mkey entry
(See Table 9, “MKey Context Format,” on page 58)

bsf0/klmO0/pas/mtt0-1

bsfl/klm1/pas/mtt2-3

UDTI-YOTT | UDTT-YOLT [UYD0T-U09 | UDS-UBS | UrS-U0S [UOP-UOT ' UD0| Y80 [U00 | HOO [3°9SHO

Table 233 - QUERY_MKEY Output Structure Field Descriptions

Offset Bits Name Description Access

00h 31:24 status

04h 31:0 syndrome

10h-4Ch [512 memory key mkey entry MKey context.
(See Table 9, “MKey Con-
text Format,” on page 58)

Mellanox Technologies 231 J

12.5.3

Table 233 - QUERY_MKEY Output Structure Field Descriptions

Offset Bits Name Description Access
110h- [128 bsf0/klm0/pas/mtt0-1 Translation entries and BSFs.
11Ch When translation entries are not KLMs:
» Ifthe pg_access bit is set, translation entries are MTTs
» Ifthe pg_access bit not set, translation entries are PASs
120h- [128 bsfl/klm1/pas/mtt2-3 Translation entries and BSFs.
12Ch
DESTROY_MKEY - Destroy MKey Entry
Table 234 - DESTROY_MKEY Input Structure Layout
3130|2928 (27(26(25(24|23|22|21|20(19(18|17|16|15|14|13/12|11(10{9 |8 |7 |6 |5 | 4 2|1 0%
&
opcode §
op_mod §
mkey_index oo:g
(=3
@
=
Table 235 - DESTROY_MKEY Input Structure Field Descriptions
Offset | Bits Name Description Access
00h 31:16 |opcode
04h 15:0 op_mod
08h 23:0 mkey index Memory Key Index
0Ch 31:0 reserved
Table 236 - DESTROY_MKEY Output Structure Layout
3130|2928 (27(26(25(24|23|22|21|20(19(18|17|16|15|14|13|12|11(10{9 |8 |7 |6 |5 | 4 2|1 0%
&
status S
(=)
syndrome e
=
(=}
o0
=
3
=
Table 237 - DESTROY_MKEY Output Structure Field Descriptions
Offset | Bits Name Description Access
00h 31:24 |status
04h 31:0 syndrome
Mellanox Technologies 232

J

12.5.4

Table 237 - DESTROY_MKEY Output Structure Field Descriptions

Offset | Bits Name Description Access
08h- 64 reserved
0Ch

The DESTROY MKEY command invalidates the MKey entry.

QUERY_SPECIAL_CONTEXTS — Query Special Context Numbers

The QUERY SPECIAL CONTEXTS returns a context number to be used for special purposes
such as, the Reserved Lkey.

Table 238 - QUERY_SPECIAL_CONTEXTS Input Structure Layout

31130(29(28(27|26(25(24|23(22(21|20(19[18|17|16(15|14|13|12|11|10|9 (8 |7 |6 |5 |4 2|1 0%
&
opcode §
op_mod :%
(e}
(o]
=
S
aQ
=
Table 239 - QUERY_SPECIAL_CONTEXTS Input Structure Field Descriptions
Offset | Bits Name Description Access
00h 31:16 |opcode
04h 15:0 op_mod
08h- 64 reserved
0Ch
Table 240 - QUERY_SPECIAL_CONTEXTS Output Structure Layout
311302928 (27(26(25(24|23|22|21|20(19(18|17|16|15|14|13/12|11(10{9 |8 |7 |6 |5 4 2|1 0%
&
S
status =
syndrome §_
(=]
resd_lkey @
Table 241 - QUERY_SPECIAL_CONTEXTS Output Structure Field Descriptions
Offset | Bits Name Description Access
00h 31:24 |status
04h 31:0 syndrome
0Ch 31:0 resd_lkey The value of the reserved Lkey for Base Memory Management
Extension
Mellanox Technologies 233

J

12.6

12.6.1

EQ Commands

EQs are created through the CREATE EQ command. To create an EQ and map events to it, soft-
ware must prepare the EQ parameters in the software format in the input mailbox and issue the
CREATE EQ command. HW returns EQ handle to be used by SW for further reference to this
EQ.

Association of completion events with EQs is controlled by the CQ configuration.

For completion events, EQEs are reported according to the configured EQ number in the CQ.

Events that are not mapped to any EQ are not reported by hardware. To query the EQ state and
parameters, software can use the command QUERY EQ. This command retrieves the EQ con-
text entry and stores it in the output mailbox in software format. The command has no effect on
EQ state or EQ execution.

To destroy an EQ, software should execute the DESTROY EQ command. After this command is
executed, the last image (contents) of the EQC is stored in the output mailbox, and the EQ
becomes invalid. It is the responsibility of software to disassociate all events previously mapped
to this EQ prior to executing the DESTROY_ EQ command.

Note: It is the responsibility of software to map events to existing and configured EQs and not to destroy an EQ

while events are still mapped to the EQ.

The commands listed in Table 242 are used for setting up and maintaining EQs.

Table 242 - EQ Commands Overview

Mnemonic Command Description Reference

CREATE_EQ Create EQ Creates new EQ Section 12.6.1, on
page 234

DESTROY_EQ | Destroy EQ Closes the EQ and invalidates the EQC Section 12.6.2, on
entry from hardware to software page 236

QUERY_EQ Query EQ Retrieves a snapshot of the current EQC Section 12.6.3, on
entry page 237

GEN_EQE Generate Event Queue Generate an Event Queue Entry Section 12.6.4, on
Entry page 239

CREATE_EQ - Create EQ

CREATE _EQ command creates new EQ. The command takes the EQC entry from the input
structure and uses it for a new EQ. CREATE_EQ transfers the physical pages of the EQ buffer.
The command also maps events to the EQ. For each bit set in the bitmask, the corresponding
event group will be mapped to the EQ. If the event group was previously mapped to another EQ,
it will be remapped to the new EQ.

Event groups that are not mapped to any EQ are not reported by the hardware. Destroying the EQ
will cause all events mapped to this EQ to be unmapped.

Mellanox Technologies 234

J

Note that there will be no event on DESTROY EQ and CREATE EQ for the EQ that the event is
mapped to it. Additionally, if CREATE EQ fails, the events related to it are still unmapped.
Table 243 - CREATE_EQ Input Structure Layout

3130

29128

27

26(25(24|23 (22|21

20

191817 |16|15/14|13|12|11(10{ 9 (8 |7 |6 |5 |4 |3 |2 |1

opcode

op_mod

€(q context entry

(See Table 93, “Event Queue Context Layout,” on page 139)

event bitmask

pas[0]

pas[1]

UDTT-USTT | UPTI-UOTT [UD01-U09 | UDS-UBS |US-U0S | UO-UOT |UD0 | U0 | Ur0 | HOO [3°SHO

Table 244 - CREATE_EQ input Structure Field Descriptions

Offset | Bits Name Description Access
00h 31:16 |opcode
04h 15:0 op_mod
10h- 512 eq context entry (See
4Ch Table 93, “Event Queue
Context Layout,” on
page 139)
58h- 64 event bitmask See Table 79, “Event Type and Coding,” on page 135
5Ch Bitmask([i] is related to the event with event-type=i etc. bitmask[0] is
reserved.
60h- 1408 reserved
10Ch
110h-... |64 pas[...]

Mellanox Technologies 235

J

Table 245 - CREATE_EQ Output Structure Layout

31130(29(28(27|26(25|24|23|22/21|20/19|18|17|16(15|14|13|12|11|10 8|7 543210%
status =
syndrome §
=
eq_number g;g
(=]
a
=
Table 246 - CREATE_EQ Output Structure Field Descriptions
Offset | Bits Name Description Access
00h 31:24 |status
04h 31:0 syndrome
08h 7:0 eq_number eq number
0Ch 31:0 reserved
The command delivers the pages for the EQ. All pages should be initialized by SW prior to post-
ing this command such that the ‘ownership’ on all EQEs will be equal to ‘1’ (initial HW owner-
ship).
12.6.2 DESTROY_EQ - Destroy EQ
The DESTROY_ EQ command closes the EQ and invalidates the EQC entry from hardware to
software. It is the responsibility of the software to unmap all the events, which were previously
mapped to the EQ, prior to issuing the DESTROY EQ command.
Note that there will be no event on destroy EQ for the EQ that the event is mapped to it. Also, if
DESTROY EQ fails, the events are still mapped to the EQ and cannot be mapped to another EQ.
Table 247 - DESTROY_EQ Input Structure Layout
31130(29(28(27|26(25|24|23|22/21|20/19|18|17|16(15|14|13|12|11|10 8|7 543210%
opcode §
op_mod §
eq_number c?_g
()
e
Table 248 - DESTROY_EQ Input Structure Field Descriptions
Offset | Bits Name Description Access
00h 31:16 |opcode
04h 15:0 op_mod

Mellanox Technologies 236

J

Table 248 - DESTROY_EQ Input Structure Field Descriptions

Offset | Bits Name Description Access
08h 7:0 eq_number eq_number
0Ch 31:0 reserved
Table 249 - DESTROY_EQ Output Structure Layout
31130(29(28(27|26(25|24|23|22|21(20(19|18|17|16|15|14|13|12|11(10|9 | 8 |7 51413121 0%
&
status S
syndrome §_
&
T
(=3
a
=
Table 250 - DESTROY_EQ Output Structure Field Descriptions
Offset | Bits Name Description Access
00h 31:24 |status
04h 31:0 syndrome
08h- 64 reserved
0Ch
12.6.3 QUERY_EQ - Query EQ
The QUERY EQ command retrieves a snapshot of the current EQC entry. The command stores
the snapshot in the output mailbox in the software format. Note that the EQC state and values are
not affected by the QUERY EQ command.
The QUERY EQ command is for debug purposes only.
Table 251 - QUERY_EQ Input Structure Layout
31130(29(28(27|26(25(24|23(22(21|20(19|18|17|16|15|14|13 (1211|109 | 8 | 7 5141321 0%
&
opcode §
op_mod §
b S
eq_number ®
(=3
a
=

Table 252 - QUERY_EQ Input Structure Field Descriptions

Offset

Bits

Name

Description

Access

00h

31:16

opcode

Mellanox Technologies 237

J

Table 252 - QUERY_EQ Input Structure Field Descriptions

Offset | Bits Name Description Access
04h 15:0 op_mod

08h 7:0 eq_number EQ number

0Ch 31:0 reserved

Table 253 - QUERY_EQ Output Structure Layout

311302928 (27(26(25(24|23|22|21/20(19(18|17|16|15|14|13/12|11(10{9 |8 |7 |6 |5 4 2(11]0

status

syndrome

€(q context entry

(See Table 93, “Event Queue Context Layout,” on page 139)

event bitmask

pas[0]

pas[1]

UDTT-USTT | UPTI-UOTT [UD01-U09 |UDS-U8S |UrS-Uu0s | UOH-UOT |UD0-80|Ur00 | OO |I°SHO

Table 254 - QUERY_EQ Output Structure Field Descriptions

Offset Bits Name Description Access
00h 31:24 |status
04h 31:0 syndrome
10h-4Ch [512 eq context entry (See

Table 93, “Event Queue
Context Layout,” on
page 139)

Mellanox Technologies

238

J

12.6.4

Table 254 - QUERY_EQ Output Structure Field Descriptions

Offset Bits Name Description Access
58h-5Ch |64 event bitmask
110h-... |64 pas[...]

GEN_EQE - Generate Event Queue Entry

The GEN_EQE command generates EQE on the specified EQ.
Table 255 - GEN_EQE Input Structure Layout

31(30(29(28(27(26|25|24(23|22|21(20|19|18|17|16|15/14|13|12|11|10|9 | 8 |7 51413121 0%
&
S
opcode =
op_mod §_
eq_number g;g
(=]
Q
=
eqe §.
A
Q
=
Table 256 - GEN_EQE Input Structure Field Descriptions
Offset | Bits Name Description Access
00h 31:16 |opcode
04h 15:0 op_mod
08h 7:0 eq_number eq_number on which we generate the EQE
10h- 512 eqe EQE to generate
4Ch

Table 257 - GEN_EQE Output Structure Layout

3130

2912827

26(25|24|23|22

21

20

1918 |1716|1514|13|12|11|{10| 9 | 8 | 7

status

syndrome

UD0-Y80 [U0 | UOO |I°SHO

Table 258 - GEN_EQE Output Structure Field Descriptions

Offset

Bits

Name

Description

Access

00h

31:24

status

Mellanox Technologies 239

J

12.7

12.71

Table 258 - GEN_EQE Output Structure Field Descriptions

Offset | Bits Name Description Access
04h 31:0 syndrome
08h- 64 reserved
0Ch

CQ Commands

CQs are created using the CREATE CQ command. Software prepares the CQ in the software
format, places it in the mailbox and issues the command. HW returns CQ handle to be used for
further reference. To destroy a CQ, software should issue the DESTROY CQ command on the

CQ.

The QUERY_ CQ command is used only for debugging and provides a snapshot of the current

CQ state.

The MODIFY_ CQ command is used for resizing a CQ, modifying the CQ moderation parame-

ters and changing the CQ to EQ mapping.

The following commands are used for setting up and maintaining CQs.

Table 259 - CQ Commands Overview

Mnemonic Command Description Reference
CREATE_CQ Create CQ Creates new CQ Section 12.7.1, on
page 240
DESTROY_CQ | Destroy CQ Destroys CQ Section 12.7.2, on
page 242
QUERY_CQ Query CQ Retrieves a snapshot of the current CQC Section 12.7.3, on
entry page 243
MODIFY_CQ Modify CQ Modify CQ parameters (resize, change Section 12.7.4, on
moderation parameters, modify CQ to EQ page 244
mapping)

CREATE_CQ - Create Completion Queue

CREATE CQ command creates new CQ. The command takes the CQC entry from the input
mailbox and uses it for new CQ. CREATE CQ also transfers the physical pages of the CQ buffer.
The command delivers the pages for the CQ. All pages should be initialized by SW prior to post-
ing this command such that the OPCODE field on all CQEs will be equal to OxF (invalid CQE).

Table 260 - CREATE_CQ Input Structure Layout

31130(29(28(27|26(25(24|23(22(21|20(19|18|17|16|15|14|13|12|11|10| 9 (8 |7 |6 |5 |4 2|1 0%
&
opcode §
op_mod §
S
(o]
=
Mellanox Technologies 240

J

Table 260 - CREATE_CQ Input Structure Layout

31(30(29 (28|27

26(25|24|23|22

21

20

19

18

17|16|15|14

cq context entry

(See Table 75, “Completion Queue Context Layout,” on page 129)

pas[0]

pas[1]

UDTT-USTL | UPII-UOLT |UD0T-U8S | UDF-UOT [UD0|ISPO

Table 261 - CREATE_CQ Input Structure Field Descriptions

Offset Bits Name Description Access
00h 31:16 |opcode
04h 15:0 op_mod
10h-4Ch [512 cq context entry (See
Table 75, “Completion
Queue Context Layout,” on
page 129)
110h-... |64 pas...]
Table 262 - CREATE_CQ Output Structure Field Descriptions
31(30(29(28(27|26|25|24(23|22|21(20|19|18|17|16|15/14|13|12|11|/10|9 |8 |7 |6 |5 |4 21 0%
&
S
status =
(=3
syndrome <
=
(=]
cqn ®
S
Q
=
Table 263 - CREATE_CQ Output Structure Field Descriptions
Offset | Bits Name Description Access
00h 31:24 |status

Mellanox Technologies

241

J

12.7.2

Table 263 - CREATE_CQ Output Structure Field Descriptions

Offset | Bits Name Description Access
04h 31:0 syndrome
08h 23:0 cqn CQ number
0Ch 31:0 reserved
DESTROY_CQ - Destroy CQ
The DESTROY CQ command destroys a CQ.
Table 264 - DESTROY_CQ Input Structure Layout
31(30(29(28(27(26|25|24(23|22|21(20|19|18|17|16|15/14|13|12|11|/10|9 | 8 |7 2|1 0%
&
S
opcode =
op_mod §
2
cqn)
(=3
@
=
Table 265 - DESTROY_CQ Input Structure Field Descriptions
Offset | Bits Name Description Access
00h 31:16 |opcode
04h 15:0 op_mod
08h 23:0 cqn cq number
0Ch 31:0 reserved
Table 266 - DESTROY_CQ Output Structure Layout
31(30(29(28(27(26|25|24(23|22|21(20|19|18|17|16|15|/14|13|12|11|10|9 | 8 |7 21 0%
&
S
status =
syndrome §
=
&
=
S
@
=
Table 267 - DESTROY_CQ Output Structure Field Descriptions
Offset | Bits Name Description Access
00h 31:24 |status
04h 31:0 syndrome
Mellanox Technologies 242

J

12.7.3

Table 267 - DESTROY_CQ Output Structure Field Descriptions

Offset | Bits Name Description Access
08h- 64 reserved
0Ch

QUERY_CQ - Query CQ

The QUERY_CQ command retrieves a snapshot of the current CQC entry. The command stores
the snapshot in the output mailbox in the software format. Note that the CQC state and values are
not affected by the QUERY CQ command.

The QUERY_ CQ command is for debug purposes only.

Table 268 - QUERY_CQ Input Structure Layout

31(30(29(28(27|26(25|24|23|22|21/20|19|18|17|16|15/14|13|12[11|10{ 9 |8 |7 |6 |5|4 (3|2 |1 0%
&
(=)
opcode S
op_mod :%
2
cqn %
S
Q
=
Table 269 - QUERY_CQ Input Structure Field Descriptions
Offset | Bits Name Description Access
00h 31:16 |opcode
04h 15:0 op_mod
08h 23:0 cqn CQ number
0Ch 31:0 reserved

Table 270 - QUERY_CQ Output Structure Layout

31(30|29

28 (27

26(25|24(23|22(21|20(19|18|17|16|15|14/13|12|11|10/9 |8 | 7|6 |54 |32 |1|0

status

syndrome

cq context entry
(See Table 75, “Completion Queue Context Layout,” on page 129)

UUD01-U8S | UOP-UOT |UD0-80|U¥00 | OO |I°SHO

Mellanox Technologies 243

J

12.7.4

Table 270 - QUERY_CQ Output Structure Layout

311302928 (27(26(25(24|23|22|21|20(19(18|17|16|15|14|13/12|11(10{9 |8 |7 |6 |5 | 4 2|1 0%
&
pas[0] g
7
=
=
pas[1] =
=
o
=
Table 271 - QUERY_CQ Output Structure Layout
Offset Bits Name Description Access
00h 31:24 status
04h 31:0 syndrome
10h-4Ch (512 cq context entry
(See Table 75, “Comple-
tion Queue Context Lay-
out,” on page 129)
58h- 1472 reserved
10Ch
110h-... |64 pas[...]

MODIFY_CQ - Modify CQ Parameters

The MODIFY CQ command is used for resizing an existing CQ, or changing the CQ to EQ
mapping and modifying the CQ context after creation (such as moderation parameters). The field
to be modified is selected using the field select bitmask, and the relevant fields passed as part of

CQC.

Table 272 - MODIFY_CQ Input Structure Layout

3130|2928 (27(26(25(24|23|22|21|20(19(18|17|16|15|14|13/12|11(10{9 |8 |7 |6 |5 | 4 2|1 Ocog
&
(=)
opcode S
op_mod :%
2
cqn %
modify field select/resize field select §
cq context entry §_
(See Table 75, “Completion Queue Context Layout,” on page 129) ('4%
=
(9,1
(=}
7
=
@
=
Mellanox Technologies 244

J

Table 272 - MODIFY_CQ Input Structure Layout

31/30(29(28|27(26(25|24(23(22|21|20(19|18(17[16|15|14(13|12|11(10|/9 |8 |7 |6 |5 (4|3 |2 |1 O%
&

pas[0] =

=

=

=

pas[1] =

o

)

=

Table 273 - MODIFY_CQ Input Structure Field Descriptions

Offset Bits Name Description Access
00h 31:16 |opcode
04h 15:0 op_mod 0: modify cq
1: resize_cq - See Table 7.12.6, “Resizing a CQ,” on page 125
08h 23:0 cqn
0Ch 31:0 modify field select/ Specifies which fields of cq context is selected.
resize field select When op_mod = 0: modify field select. See Table 274, “MODI-
FY FIELD SELECT Structure Layout,” on page 245.
When op_mod = 1: resize_field select. See Table 276, “RESIZE -
FIELD_ SELECT Structure Layout,” on page 246.
10h-4Ch [512 cq context entry (See
Table 75, “Completion
Queue Context Layout,” on
page 129)
110h-... |64 pasl...] Valid only for resize _cq (op_mode=1)
Table 274 - MODIFY_FIELD_SELECT Structure Layout
3113029 |28(27/26(25(24(23]22|21/20(19(18|17|16|15|14|13|12/11|10{9 |8 |7 |6 (5|4 |3 |2 |1 O:Og
&
modify field select §

Mellanox Technologies 245

J

Table 275 - MODIFY_FIELD_SELECT Structure Field Descriptions

Offset | Bits Name Description Access
00h 31:0 modify field select When op_mod=0 (modifying cq fields)
Selects fields to be modified
Bit 0: cq_period - this field can be modified only if cq_modera-
tion in QUERY HCA_ CAP is set. See Section 12.3.3, “QUE-
RY HCA_ CAP - Query Device Capabilities,” on page 194.
Bit 1: cq_max_count - this field can be modified only if cq_mod-
eration in QUERY _HCA_CAP is set. See Section 12.3.3,
“QUERY_HCA_ CAP — Query Device Capabilities,” on
page 194
Bit 2: oi - this field can be modified only if cq_oi in QUERY H-
CA_CAP is set. See Section 12.3.3, “QUERY_HCA CAP —
Query Device Capabilities,” on page 194.
Bit 3: ¢_eqn - this field can be modified only if HCA -
CAP.cq_eq remap is set. See Section 12.3.3, “QUERY_HCA -
CAP — Query Device Capabilities,” on page 194.
Table 276 - RESIZE_FIELD SELECT Structure Layout
3130|129 |28(27(26(25(24(23|22|21|20(19(18|17|16|15|14|13|12/11|10{9 |8 |7 |6 |5|4 |3 |2 |1 0%
&
resize field select §
Table 277 - RESIZE_FIELD _SELECT Structure Field Descriptions
Offset | Bits Name Description Access
00h 31:0 resize_field select When op_mod=1(Resize_Cq)
Bit 0: log_cq_size
Bit 1: page offset
Bit 2: log_page_size
Table 278 - MODIFY_CQ Output Structure Field Descriptions
311302928 (27/26(25(24(23(22|21|20(19(18|17|16|15|14|13|12/11|10{9 |8 |7 |6 |54 |3 |2 |1 0%
&
S
status =
(=3
syndrome <
=
(=]
(o}
=
S
@
=
Table 279 - MODIFY_CQ Output Structure Field Descriptions
Offset | Bits Name Description Access
00h 31:24 |status
Mellanox Technologies 246

J

12.8

12.8.1

Table 279 - MODIFY_CQ Output Structure Field Descriptions

Offset | Bits Name Description Access
04h 31:0 syndrome
08h- 64 reserved
0Ch

TIR Commands

The following commands are used for controlling TIR resources (TIR is discussed in detail in
Section 7.5, “Transport Interface Receive (TIR),” on page 84).

Table 280 - TIR Commands Overview

Mnemonic Command Description Reference

CREATE TIR Create TIR Allocate a new Transport Inter- 12.8.1 CREATE TIR — Create TIR
face Receive context

MODIFY_TIR Modify TIR Modify a Transport Interface 12.8.2 MODIFY_TIR — Modify TIR
Receive context

DESTROY TIR Destroy TIR Destroy a Transport Interface 12.8.3 DESTROY_TIR — Destroy TIR
Receive context

QUERY_TIR Query TIR Retrieves a snapshot of the cur- 12.8.4 QUERY_TIR — Query TIR

context

rent Transport Interface Receive

CREATE_TIR - Create TIR

CREATE_TIR command allocates a new TIR Context. On successful completion, a tir number
is returned for future reference to the created TIR Context and the context is placed at the RDY

state.

Table 281 - CREATE_TIR Input Structure Layout

31(30(29(28(27|26(25|24|23|22|21/20|19|18|17|16|15/14|13|12[11|10[9 |8 |7 |6 |5|4 (3|2 |1 O%
&
(=3
opcode =)
op_mod §
()
(o]
7
o
=
tir_context §
(' See Table 44, “TIR Context Format,” on page 84) '5
O
Table 282 - CREATE_TIR Input Structure Field Descriptions
Offset Bits Name Description

00h 31:16

opcode

Mellanox Technologies

247

J

12.8.2

Table 282 - CREATE_TIR Input Structure Field Descriptions

(See Table 44, “TIR Con-
text Format,” on page 84)

Offset | Bits Name Description
04h 15:0 op_mod Must be 0
20h-10C [1920 tir_context TIR Context Entry.

Required fields must be specified.

Table 283 - CREATE_TIR Output Structure Layout

3130

2912827

26(25(24|23(22

21

20

191817 |16|15/14|13|12|11/10| 9 | 8 |7 |6 |5 | 4

status

syndrome

tirn

UD0 (Y80 | Uv0 | HOO [3°SHO

Table 284 - CREATE_TIR Output Structure Field Descriptions

Offset | Bits Name Description
00h 31:24 |status
04h 31:0 syndrome
08h 23:0 tirn TIR Context Number
0Ch 31:0 reserved

MODIFY_TIR — Modify TIR

MODIFY_ TIR command modifies fields in the TIR Context. The command is executed atomi-
cally on the TIR Context. The command takes a bitmask to determine which fields to update in
the TIR Context.

Table 285 - MODIFY_TIR Input Structure Layout

3130

2912827

26(25|24|23|22

21

20

191817161514 |1312|11({10| 9 [8 | 7|6 |5 | 4

opcode

op_mod

tirn

modify bitmask[63:32]

modify_bitmask[31:0]

U1 | HOT |UD0 | U80 | U0 | U00 [1RSHO

Mellanox Technologies

248

J

Table 285 - MODIFY_TIR Input Structure Layout

3113029 |28(27/26(25(24(23]22|21/20(19(18|17|16|15|14|13|12/11|10{9 |8 |7 |6 |54 |3 |2 |1 %
&
%
7
o
=
. N}
tir_context =
(See Table 44, “TIR Context Format,” on page 84) '5
Q
Table 286 - MODIFY_TIR Input Structure Field Descriptions
Offset Bits Name Description
00h 31:16 |opcode
04h 15:0 op_mod Must be 0
08h 23:0 tirn TIR Context Number
10h 31:0 modify bitmask[63:32] Bitmask that controls the fields to update in the TIR Context.
For more details See Table 48, “MODIFY _TIR Bitmask,” on
page 88
14h 31:0 modify bitmask[31:0]
20h-10C [1920 tir_context TIR Context Entry. Only fields requested by the mask should be
(See Table 44, “TIR Con- |valid. Other fields are reserved. Indirection table entries should only
text Format,” on page 84) |be provided if the relevant bitmask bit is set.
Table 287 - MODIFY_TIR Output Structure Layout
31130(29(28(27|26(25(24|23(22(21|20(19|18|17|16|15|14|13 (1211|109 (8 |7 |6 |5 |4 |3 |2 |1 %
&
status S
d £
syndrome =
(=)
(o]
=
(=3
Q
=
Table 288 - MODIFY_TIR Output Structure Field Descriptions
Offset | Bits Name Description
00h 31:24 |status
04h 31:0 syndrome
08h 23:0 reserved
0Ch 31:0 reserved
Mellanox Technologies 249

J

4 N

12.8.3 DESTROY_TIR - Destroy TIR

The DESTROY _TIR command destroys a TIR context and releases the related HW resources.
When used with LRO, the command also terminates outstanding LRO sessions on the TIR and
generates completion for them.

Table 289 - DESTROY_TIR Input Structure Layout

3130|2928 (27(26(25(24(23(22|21|20(19[18[17[16|15|14|13|12/11|10{9 |8 |7 |6 |5 |4 |3 |2 |1 0%
&
opcode §
op_mod §_
tirn g;g
(=]
Q
=
Table 290 - DESTROY _TIR Input Structure Field Descriptions
Offset | Bits Name Description
00h 31:16 |opcode
04h 15:0 op_mod Must be 0
08h 23:0 tirn TIR Context number
0Ch 31:0 reserved
Table 291 - DESTROY_TIR Output Structure Layout
3130|2928 (27(26(25(24{23]22|21|20(19(18[17[16|15|14|13|12/11|10{9 |8 |7 |6 |5 |4 |3 |2 |1 0%
&
status S
S
syndrome e
=
S
(o]
=
=
Q
=

Table 292 - DESTROY_TIR Output Structure Field Descriptions

Offset | Bits Name Description

00h 31:24 |status

04h 31:0 syndrome

08h- 64 reserved
0Ch

K Mellanox Technologies 250 J

12.8.4 QUERY_TIR - Query TIR

The QUERY_TIR command retrieves a snapshot of the current TIR context entry. The TIR state
and values are not affected by the QUERY TIR command.

Table 293 - QUERY_TIR Input Structure Layout

31(30(29(28(27|26|25|24|23|22|21(20|19|18|17|16|15/14|13|12|11/10|9 |8 |7 |6 |5 |4 2|1 Ocog
&
(=)
opcode S
op_mod §
. (=}
tirn ®
(=3
Q
=
Table 294 - QUERY _TIR input Structure Field Descriptions
Offset | Bits Name Description Access
00h 31:16 |opcode
04h 15:0 op_mod Must be 0
08h 23:0 tirn TIR Context number
0Ch 31:0 reserved
Table 295 - QUERY_TIR Output Structure Layout
31(30(29(28(27|26|25|24|23|22|21(20|19|18|17|16|15/14|13|12|11/10|9 |8 |7 |6 |5 |4 21110
status
syndrome

tir_context

(See Table 44, “TIR Context Format,” on page 84)

UD0T1-40T | UD0-80 | U0 | U0O [1PSHO

Table 296 - QUERY_TIR Output Structure Field Descriptions

Offset Bits Name Description
00h 31:24 |status
04h 31:0 syndrome
08h-0Ch |64 reserved
20h- 1920 tir_context TIR Context Entry.
10Ch (See Table 44, “TIR Con-
text Format,” on page 84)

Mellanox Technologies

251

J

12.9

12.9.1

TIS Commands

The following commands are used for controlling TIS resources (TIS is discussed in detail in
Section 7.6, “Transport Interface Send (TIS),” on page 89).

Table 297 - TIS Commands Overview

Mnemonic Command Description Reference

CREATE_TIS Create TIS Allocate a new Transport 12.9.1 CREATE_TIS — Create TIS
Interface Send context

MODIFY_TIS Modify TIS Modify a Transport Interface 12.9.2 MODIFY_TIS — Modify TIS
Send context

DESTROY_TIS | Destroy TIS Destroy a Transport Interface 12.9.3 DESTROY_TIS — Destroy TIS
Send context

QUERY_TIS Query TIS Retrieves a snapshot of the 12.9.4 QUERY_TIS — Query TIS
current Transport Interface
Send context

CREATE_TIS - Create TIS

CREATE_TIS command allocates a new TIS context. Upon successful completion, a tis_ number
is returned for future reference to the created TIS context and the context is placed at RDY state.
Table 298 - CREATE_TIS Input Structure Layout

3130|2928 (27/26(25(24(23|22|21|20(19(18|17|16|15|14|13|12/11|10{9 |8 |7 |6 |54 |3 |2 |1 %
&
opcode §
op_mod §
()
(o]
7
a
=
tis_context §
(See Table 49, “TIS Context Format,” on page 89) !
Table 299 - CREATE_TIS Input Structure Field Descriptions
Offset Bits Name Description
00h 31:16 |opcode
04h 15:0 op_mod Must be 0
20h-... [1280 tis_context TIS Context Entry.

(See Table 49, “TIS Con- |Required fields must be specified.

text Format,” on page 89)

Mellanox Technologies

252

J

Table 300 - CREATE_TIS Output Structure Layout

31(30

29128

27

26(25(24123(22|21(20(19|18|17|16|15|14|13(12|11|10|9 |8 |7 |6 |5 |4 (3|2 |1

status

syndrome

tisn

UD0 (Y80 | Uv0 | HOO [I°SHO

Table 301 - CREATE_TIS Output Structure Field Descriptions

Offset | Bits Name Description
00h 31:24 |status
04h 31:0 syndrome
08h 23:0 tisn TIS Context Number
0Ch 31:0 reserved

12.9.2 MODIFY_TIS - Modify TIS

MODIFY _TIS command modifies fields in the TIS context. The command is executed atomi-
cally on the TIS Context. The command takes a bitmask to determine which fields to update in
the TIS Context. In order to enforce correct state transition, the command also takes the TIS cur-
rent state as an input. If the current state from the input does not match the existing TIS state,
then the command fails (return code BAD RESOURCE_STATE) and the TIS remains unaf-

fected.

Note: MODIFY _TIS is supported only when HCA CAP.modify tis==1.

Note: MODIFY _TIS is allowed only for TIS when all SQs connected to it are not in ready state.
Table 302 - MODIFY_TIS Input Structure Layout

3130

29128

27

26(25|24(23(22(21|20({19|18|17|16|15|14|13|12(11|10{ 9 |8 |7 |6 5|4 (3|2 |1

opcode

op_mod

tisn

modify bitmask[63:32]

modify_bitmask[31:0]

tis_context
(See Table 49, “TIS Context Format,” on page 89)

40T (UDT-UST | UPI | HOT [UDO0 | Y80 | U0 [Y00 |I9SPO

Mellanox Technologies 253

12.9.3

Table 303 - MODIFY_TIS Input Structure Field Descriptions

Offset Bits Name Description
00h 31:16 |opcode
04h 15:0 op_mod Must be 0
08h 23:0 tisn TIS Context Number
10h 31:0 modify bitmask[63:32] Bitmask that controls the fields to update in the TIS Context.
For more details, See Table 51, “MODIFY_TIS Bitmask,” on
page 90
14h 31:0 modify bitmask[31:0]
20h-... [1280 tis_context TIS Context Entry. Only fields requested by the mask should be
(See Table 49, “TIS Con- |valid. Other fields are reserved. Indirection table entries should only
text Format,” on page 89) |be provided if the relevant bitmask bit is set.

Table 304 - MODIFY_TIS Output Structure Layout

31(30(29(28(27(26|25(24(23(22|21|20(19|18|17|16|15|14|13|12|11|10{9 (8 |7 |6 |54 |3 |2 |1 %
&
status S
syndrome :ﬁr
2
(=n
(=3
a
=
Table 305 - MODIFY_TIS Output Structure Field Descriptions
Offset | Bits Name Description
00h 31:24 |status
04h 31:0 syndrome
08h 23:0 reserved
0Ch 31:0 reserved
DESTROY_TIS — Destroy TIS
The DESTROY_TIS command destroys a TIS context and releases the related HW resources.
Table 306 - DESTROY_TIS Input Structure Layout
31130(29(28(27|26(25(2423(22(21|20(19[18|17|16[15|14|13 (1211|109 (8 |7 |6 |5 |4 |3 |2 |1 %
&
(=3
opcode =
op_mod §_
Mellanox Technologies 254

J

Table 306 - DESTROY_TIS Input Structure Layout

31(30(29(28(27|26(25|24|23|22|21/20|19|18|17|16|15/14|13|12/11|10| 9 |8 |7 |6 |54 |3 |2 |1|0

UD0| U0 |1°sHO

Table 307 - DESTROY_TIS Input Structure Field Descriptions

Offset | Bits Name Description

00h 31:16 |opcode

04h 15:0 op_mod Must be 0

08h 23:0 tisn TIS Context number

0Ch 31:0 reserved

Table 308 - DESTROY_TIS Output Structure Layout

31130(29(28(27|26|25|24|23|22|21(20({19|18|17|16|15|14|13|12|11(10|/9 |8 |7 |6 (5|43 |2|1|0

status

syndrome

UD0-Y80 (U200 | HOO [I9SHO

Table 309 - DESTROY_TIS Output Structure Field Descriptions

Offset | Bits Name Description

00h 31:24 |status

04h 31:0 syndrome

08h- 64 reserved
0Ch

12.9.4 QUERY_TIS — Query TIS

The QUERY _TIS command retrieves a snapshot of the current TIS Context entry. The TIS state
and values are not affected by the QUERY TIS command.

Table 310 - QUERY_TIS Input Structure Layout

31130(29(28(27|26|25|24|23|22|21(20(19|18|17|16|15|14|13|12|11(10|/9 |8 |7 |6 (5|43 |2|1|0

opcode

op_mod

tisn

Y80 | U0 | H0O | 19O

Mellanox Technologies 255 J

Table 310 - QUERY_TIS Input Structure Layout

_/

311302928 (27(26(25(24|23|22|21|20(19(18|17|16|15|14|13/12|11(10{9 |8 |7 |6 |5 | 4 2|1 0%
&
(=3
Q
=
Table 311 - QUERY_TIS input Structure Field Descriptions
Offset | Bits Name Description Access
00h 31:16 |opcode
04h 15:0 op_mod Must be 0
08h 23:0 tisn TIS Context number
0Ch 31:0 reserved
Table 312 - QUERY_TIS Output Structure Layout
311302928 (27(26(25(24|23|22|21/20(19(18|17|16|15|14|13/12|11(10{9 |8 |7 |6 |5 4 2|1 0%
&
S
status =
d =
syndrome L
(=}
o0
S
Q
=
tis_context §
(See Table 49, “TIS Context Format,” on page 89) 4
Table 313 - QUERY_TIS Output Structure Field Descriptions
Offset Bits Name Description
00h 31:24 status
04h 31:0 syndrome
08h-0Ch |64 reserved
10h-... [1280 tis_context TIS Context Entry.
(See Table 49, “TIS Con-
text Format,” on page 89)
Mellanox Technologies 256

J

4 N

12.10 Send Queue (SQ) Commands

The following commands are used for controlling SQ resources (SQ is discussed in detail in
Section 7.9, “Send Queue (SQ),” on page 99).

Table 314 - SQ Commands Overview

Mnemonic Command Description Reference
CREATE_SQ Create SQ Allocate and initialize a new 12.10.1 CREATE_SQ — Create Send
Send Queue context Queue
MODIFY_SQ Modify SQ Modify a Send Queue context | 12.10.2 MODIFY_SQ — Modify Send
Queue
DESTROY_SQ Destroy SQ Destroy a Send Queue context | 12.10.3 DESTROY_SQ — Destroy a
Send Queue Context
QUERY_SQ Query SQ Retrieves a snapshot of the 12.10.4 QUERY_SQ — Query Send
current Send Queue context Queue

12.10.1 CREATE_SQ - Create Send Queue

CREATE_ SQ command creates new Send Queue (SQ) Context. The command allocates an SQ
Context. The command then takes the SQ Context entry from the input mailbox and uses it to ini-
tialize the newly created SQ object. Upon successful completion, an sq_number is returned for
future reference to the created SQ Context.

Table 315 - CREATE_SQ Input Structure Layout

31(30(29(28(27|26(25|24|23|22|21/20|19|18|17|16|15/14|13|12|11|10| 9 |8 |7 |6 |54 |3 |2|1|0

opcode

op_mod

sq_context
(See Table 60, “SQ Context Format,” on page 100)

“=40T [UDI1-UD0 | U80 | Ur0 | UOO | 19sHO

Table 316 - CREATE_SQ Input Structure Field Descriptions

Offset Bits Name Description

00h 31:16 |opcode

04h 15:0 op_mod Must be 0

20h... 1984 sq_context SQ Context,

(See Table 60, “SQ Con- | The list of fields that should be specified in the SQ context are listed
text Format,” on page 100) |in Table 62, “CREATE_SQ and MODIFY_SQ Bitmask,” on

page 102

K Mellanox Technologies 257 J

Table 317 - CREATE_SQ Output Structure Layout

31(30

29128

27

26(25(24|23(22|21/20|19|18|17|16|15(14|13|12|11|10{9 |8 | 7|6 |5 | 4

status

syndrome

sqn

UD0 (Y80 | Uv0 | HOO [I°SHO

Table 318 - CREATE_SQ Output Structure Field Descriptions

Offset | Bits Name Description
00h 31:24 |status
04h 31:0 syndrome
08h 23:0 sqn SQ Context Number
0Ch 31:0 reserved

12.10.2 MODIFY_SQ - Modify Send Queue

MODIFY_SQ command modifies fields in the Send Queue (SQ) Context. The command is exe-
cuted atomically on the SQ Context. The command takes a bitmask to determine which fields to
update in the SQ Context. In order to enforce correct state transition, the command also takes the
SQ current state as an input. If the current state from the input does not match the existing SQ
state, then the command fails (return code BAD RESOURCE_STATE) and the SQ remains
unaffected.

Table 319 - MODIFY_SQ Input Structure Layout

31(30(29(28(27|26(25|24|23|22|21(20|19|18|17|16|15/14|13|12|11|/10|9 |8 |7 |6 |5 | 4 2|1 %
&
opcode §
op_mod §
tat g
sq_state sqn =
(=3
@
=
modify bitmask[63:32] §
modify bitmask[31:0] 5
%
o
=
sq_context §_
(See Table 60, “SQ Context Format,” on page 100) 2
Mellanox Technologies 258

Table 320 - MODIFY_SQ Input Structure Field Descriptions

Offset Bits Name Description
00h 31:16 |opcode
04h 15:0 op_mod Must be 0
08h 31:28 sq_state Current SQ state
Encoding is the same as in SQ context
08h 23:0 sqn SQ Context Number
10h 31:0 modify bitmask[63:32] Bitmask that controls the fields to update in the SQ Context.
See Table 62, “CREATE_SQ and MODIFY _SQ Bitmask,” on
page 102 for more details
14h 31:0 modify bitmask[31:0]
20h-... [1984 sq_context SQ Context Entry.
(See Table 60, “SQ Con- |Only fields requested by the mask should be valid. Other fields are
text Format,” on page 100) |reserved.

Table 321 - MODIFY_SQ Output Structure Layout

31130(29(28(27|26(25(24|23(22(21|20(19|18|17|16|15|14|13 (1211|109 (8 |7 |6 |5 |4 |3 |2 |1 %
&
status S
(o)
syndrome =
(=}
o}
=
(=3
Q
=
Table 322 - MODIFY_SQ Output Structure Field Descriptions
Offset | Bits Name Description
00h 31:24 |status
04h 31:0 syndrome
08h 23:0 reserved
0Ch 31:0 reserved
Mellanox Technologies 259

J

12.10.3 DESTROY_SQ - Destroy a Send Queue Context

The DESTROY_SQ command destroys a Send Queue (SQ) Context and releases the related HW
resources.

Table 323 - DESTROY_SQ Input Structure Layout

31(30(29(28(27|26(25|24|23|22|21/20|19|18|17|16|15/14|13|12[11|10{ 9 |8 |7 |6 |5|4 (3|2 |1 Ocog
&
(=)
opcode =
op_mod :%
(=]
sqn ®
S
Q
=
Table 324 - DESTROY_SQ Input Structure Field Descriptions
Offset | Bits Name Description
00h 31:16 |opcode
04h 15:0 op_mod Must be 0
08h 23:0 sqn SQ Context number
0Ch 31:0 reserved
Table 325 - DESTROY_SQ Output Structure Layout
31(30(29(28(27|26(25|24|23|22|21/20|19|18|17|16|15/14|13|12[11|10{ 9 |8 |7 |6 |5|4 (3|2 |1 0%
&
(=)
status =]
(=)
syndrome e
=
()
(o]
=
S
Q
=

Table 326 - DESTROY_SQ Output Structure Field Descriptions

Offset | Bits Name Description

00h 31:24 |status

04h 31:0 syndrome

08h- 64 reserved
0Ch

Mellanox Technologies 260 J

12.10.4 QUERY_SQ - Query Send Queue
The QUERY_SQ command retrieves a snapshot of the current SQ Context entry. The SQ state

and values are not affected by the QUERY SQ command.

Table 327 - QUERY_SQ Input Structure Layout

31(30(29(28(27|26|25|24|23|22|21(20|19|18|17|16|15/14|13|12|11/10|9 |8 |7 |6 |5 |4 2|1 Ocog
&
(=)
opcode S
op_mod §
2
sqn %
(=3
Q
=
Table 328 - QUERY_SQ input Structure Field Descriptions
Offset | Bits Name Description Access
00h 31:16 |opcode
04h 15:0 op_mod Must be 0
08h 23:0 sqn SQ Context number
0Ch 31:0 reserved
Table 329 - QUERY_SQ Output Structure Layout
31(30(29(28(27|26|25|24|23|22|21(20|19|18|17|16|15/14|13|12|11/10|9 |8 |7 |6 |5 |4 2|1 0%
&
(=)
status =]
d =
syndrome =
(=)
oo
S
Q
=
sq_context §
(See Table 60, “SQ Context Format,” on page 100) !
Table 330 - QUERY_SQ Output Structure Field Descriptions
Offset Bits Name Description
00h 31:24 |status
04h 31:0 syndrome
08h-0Ch |64 reserved
20h-... [1984 sq_context SQ Context Entry.
(See Table 60, “SQ Con-
text Format,” on page 100)
Mellanox Technologies 261

J

-

12.11 Receive Queue (RQ) Commands

The following commands are used for controlling RQ resources (RQ is discussed in detail in
Section 7.7, “Receive Queue (RQ),” on page 90).

Table 331 - RQ Commands Overview

Mnemonic Command Description Reference

CREATE _RQ Create RQ Allocate and initialize a new 12.11.1 CREATE_RQ — Create Receive
Receive Queue context Queue

MODIFY_RQ Modify RQ Modify a Receive Queue con- | 12.11.2 MODIFY_RQ — Modify
text Receive Queue

DESTROY_RQ Destroy RQ Destroy a Receive Queue con- | 12.11.3 DESTROY_RQ — Destroy a
text Receive Queue Context

QUERY_RQ Query RQ Retrieves a snapshot of the 12.11.4 QUERY_RQ — Query Receive
current Receive Queue context | Queue

12.11.1 CREATE_RQ - Create Receive Queue

CREATE_RQ command creates a new Receive Queue (RQ) Context. The command allocates an
RQ Context. The command then takes the RQ Context entry from the input mailbox and uses it
to initialize the newly created RQ object. Upon successful completion, an rq_number is returned
for future reference to the created RQ Context.

Table 332 - CREATE_RQ Input Structure Layout

31130(29(28(27|26(25(24|23(22(21|20(19[18|17|16(15|14|13|12|11|10| 9 (8 |7 |6 |5 |4 2|1 :Og
&
opcode §
op_mod :%
(=]
o0
=
S
Q
7
o
=
rq_context §
(See Table 52, “RQ Context Format,” on page 91) !
Table 333 - CREATE_RQ Input Structure Field Descriptions
Offset Bits Name Description
00h 31:16 |opcode
04h 15:0 op_mod Must be 0
20h-... [1984 rq_context RQ Context

(See Table 52, “RQ Con-

text Format,” on page 91) |in Table 56, “CREATE RQ and MODIFY RQ Bitmask,” on

page 95

The list of fields that should be specified in the RQ context are listed

Mellanox Technologies

262

J

Table 334 - CREATE_RQ Output Structure Layout

31(30

292827

26(25(24|23(22|21(20|19|18|17(16|15|14(13(12|11|10|9 |8 |7 |6 |54 |32 |1]0

status

syndrome

rqn

UD0 (Y80 | Uv0 | HOO [I°SHO

Table 335 - CREATE_RQ Output Structure Field Descriptions

Offset | Bits Name Description
00h 31:24 |status
04h 31:0 syndrome
08h 23:0 rqn RQ Context Number
0Ch 31:0 reserved

12.11.2 MODIFY_RQ - Modify Receive Queue

MODIFY_ RQ command modifies fields in the Receive Queue (RQ) Context. The command is
executed atomically on the RQ Context. The command takes a bitmask to determine which fields
to update in the RQ Context. In order to enforce correct state transition, the command also takes
the RQ current state as an input. If the current state from the input does not match the existing
RQ state, then the command fails (return code BAD RESOURCE_STATE) and the RQ remains
unaffected.

Table 336 - MODIFY_RQ Input Structure Layout

31(30

292827

26(25(24|23(22|21(20|19|18|17(16|15|14(13(12|11|10|9 |8 |7 |6 |54 |32 |1]0

opcode

op_mod

rq_state

rqn

modify_bitmask[63:32]

modify bitmask[31:0]

rq_context
(See Table 52, “RQ Context Format,” on page 91)

=0T |(UDT-UST | UbI | HOT [UD0| U80 | U0 | U0 |I°SPO

Mellanox Technologies 263

Table 337 - MODIFY_RQ Input Structure Field Descriptions

Offset Bits Name Description
00h 31:16 |opcode
04h 15:0 op_mod Must be 0
08h 31:28 rq_state Current RQ state
Encoding is the same as in RQ context
08h 23:0 rqn RQ Context Number
10h 31:0 modify bitmask[63:32] Bitmask that controls the fields to update in the RQ Context. See
Table 56, “CREATE_RQ and MODIFY_RQ Bitmask,” on page 95
for more details
14h 31:0 modify bitmask[31:0]
20h-... [1984 rq_context RQ Context Entry.
(See Table 52, “RQ Con- |Only fields requested by the mask should be valid Other fields are
text Format,” on page 91) |reserved.

Table 338 - MODIFY_RQ Output Structure Layout

31(30(29 (28|27

26(25(24123(22|2120

19181716 |15/14|13|12|11(10{ 9 (8 |7 |6 |5 |4 |3 |2 |1

status

syndrome

UD0| Y80 | U0 | HOO [3*SHO

Table 339 - MODIFY_RQ Output Structure Field Descriptions

Offset | Bits Name Description
00h 31:24 |status
04h 31:0 syndrome
08h 23:0 reserved
0Ch 31:0 reserved

Mellanox Technologies 264

J

12.11.3 DESTROY_RQ - Destroy a Receive Queue Context

The DESTROY_ RQ command destroys a Receive Queue (RQ) Context and releases the related
HW resources.

Table 340 - DESTROY_RQ Input Structure Layout

311302928 (27/26(25(24(23]22|21|20(19(18|17|16|15|14|13|12/11|10{9 |8 |7 |6 (5|4 |3 |2 |1 Ocog
&
(=)
opcode =
op_mod :%
(=]
rqn ®
S
Q
=
Table 341 - DESTROY_RQ Input Structure Field Descriptions
Offset | Bits Name Description
00h 31:16 |opcode
04h 15:0 op_mod Must be 0
08h 23:0 rqn RQ Context number
0Ch 31:0 reserved
Table 342 - DESTROY_RQ Output Structure Layout
3113029 |28(27/26(25(24(23]22|21/20(19(18|17|16|15|14|13|12/11|10{9 |8 |7 |6 |54 |3 |2 |1 0%
&
(=)
status =]
(=)
syndrome e
=
()
(o]
=
S
Q
=

Table 343 - DESTROY_RQ Output Structure Field Descriptions

Offset | Bits Name Description

00h 31:24 |status

04h 31:0 syndrome

08h- 64 reserved
0Ch

Mellanox Technologies 265 J

12.11.4 QUERY_RQ - Query Receive Queue

The QUERY_ RQ command retrieves a snapshot of the current RQ Context entry. The RQ state
and values are not affected by the QUERY RQ command.

Table 344 - QUERY_RQ Input Structure Layout

311302928 (27(26(25(24|23|22|21/20(19(18|17|16|15|14|13/12|11(10{9 |8 |7 |6 |5 | 4 2|1 Ocog
&
(=)
opcode S
op_mod §
&
rqn %
(=3
Q
=
Table 345 - QUERY_RQ input Structure Field Descriptions
Offset | Bits Name Description Access
00h 31:16 |opcode
04h 15:0 op_mod Must be 0
08h 23:0 rqn RQ Context number
0Ch 31:0 reserved
Table 346 - QUERY_RQ Output Structure Layout
311302928 (27(26(25(24|23|22|21/20(19(18|17|16|15|14|13/12|11(10{9 |8 |7 |6 |5 | 4 2|1 0%
&
(=)
status =]
d =
syndrome =
(=)
%
=
=
rq_context g::
(See Table 52, “RQ Context Format,” on page 91) !
Table 347 - QUERY_RQ Output Structure Field Descriptions
Offset | Bits Name Description
00h 31:24 status
04h 31:0 syndrome
08h-10h |64 reserved
20h-... [1984 rq_context RQ Context Entry
(See Table 52, “RQ Con-
text Format,” on page 91)
Mellanox Technologies 266

J

12.12 RQT Commands

The following commands are used for controlling RQT resources (RQT is discussed in detail in
Section 7.8, “RQ Table (RQT),” on page 98).

Table 348 - RQT Commands Overview

current RQ Table

Mnemonic Command Description Reference
CREATE _RQT Create RQT Allocate a new RQ Table 12.12.1 CREATE_RQT — Create RQT
MODIFY RQT Modify RQT Modify a RQ Table 12.12.2 MODIFY_RQT — Modify RQ
table
DESTROY_RQT | Destroy RQT Destroy a RQ Table 12.12.3 DESTROY_RQT - Destroy
RQT
QUERY_RQT Query RQT Retrieves a snapshot of the 12.12.4 QUERY_RQT — Query RQT

12.12.1 CREATE_RQT - Create RQT

CREATE RQT command allocates a new RQT context. Upon successful completion, an
rqt_number is returned for future reference to the created RQT Context.

Table 349 - CREATE_RQT Input Structure Layout

31(30(29(28(27|26(25|24|23|22|21/20|19|18|17|16|15/14|13|12|11|10{ 9 |8 |7 |6 |5|4 (3|2 |1 %
&
opcode §
op_mod :%
(=]
(o]
7
o
=
rqt_context §
(See Table 58, “RQT Context Format,” on page 98) !
Table 350 - CREATE_RQT Input Structure Field Descriptions
Offset Bits Name Description

00h 31:16 |opcode

04h 15:0 op_mod

Must be 0

20h-... [1952 rqt_context
(See Table 58, “RQT Con-
text Format,” on page 98)

RQT Context Entry.

Required fields must be specified.

Mellanox Technologies 267

J

Table 351 - CREATE_RQT Output Structure Layout

31(30

292827

26|25

2412322

21

20

1918|1716 |15(14 13

status

syndrome

rqtn

UD0 (Y80 | Uv0 | HOO [I°SHO

Table 352 - CREATE_RQT Output Structure Field Descriptions

Offset | Bits Name Description
00h 31:24 |status
04h 31:0 syndrome
08h 23:0 rqtn RQT Context Number
0Ch 31:0 reserved

12.12.2 MODIFY_RQT - Modify RQ table

MODIFY RQT command modifies fields in the RQT context. The command takes a bitmask to
determine which fields to update in the RQT context.

Table 353 - MODIFY_RQT Input Structure Layout

3130|2928 (27(26(25(24|23|22|21|20(19(18|17|16|15|14|13/12|11(10{9 |8 |7 |6 |5 | 4 2|1 :Og
&
opcode §
op_mod :%
(=]
rqtn &
S
Q
=
modify bitmask[63:32] 2
modify_bitmask[31:0] =
o0
T
a
=
rqt_context §
(See Table 58, “RQT Context Format,” on page 98) !
Table 354 - MODIFY_RQT Input Structure Field Descriptions
Offset Bits Name Description
00h 31:16 |opcode
Mellanox Technologies 268

J

Table 354 - MODIFY_RQT Input Structure Field Descriptions

Offset Bits Name Description
04h 15:0 op_mod Must be 0
08h 23:0 rqtn RQT Number.
10h 31:0 modify bitmask[63:32] Higher Bitmask that controls the fields to update in RQT Context.
14h 31:0 modify_bitmask[31:0] Lower Bitmask that controls the fields to update in RQT Context.
Bit 0: rqt_acual size and the rq_num list.
others: reserved.
20h-... [1952 rqt_context RQT Context Entry. Only fields requested by the mask should be
(See Table 58, “RQT Con- |valid, other fields are reserved.
text Format,” on page 98)

Table 355 - MODIFY_RQT Output Structure Layout

31(30(29|28|27(26|25|24|23|22(21(20|19|18|17|16|15|14|13|12|11|10|9 (8 |7 |6 |5 |4 21 %
&
status §
syndrome :ﬁr
&
=
S
Q
=
Table 356 - MODIFY_RQT Output Structure Field Descriptions
Offset | Bits Name Description
00h 31:24 |status
04h 31:0 syndrome
08h 23:0 reserved
0Ch 31:0 reserved
12.12.3 DESTROY_RQT - Destroy RQT
The DESTROY RQT command destroys an RQT context and releases the related HW
resources.
Table 357 - DESTROY_RQT Input Structure Layout
31130(29(28(27|26(25|24|23(22/21|20(19|18|17|16|15|14|13 1211|109 (8 |7 |6 |5 |4 2|1 %
&
opcode §
op_mod §
t S
rqtn =
(=3
@
=
Mellanox Technologies 269

J

Table 358 - DESTROY_RQT Input Structure Field Descriptions

Offset | Bits Name Description
00h 31:16 |opcode
04h 15:0 op_mod Must be 0
08h 23:0 rqtn RQT Context number
0Ch 31:0 reserved
Table 359 - DESTROY_RQT Output Structure Layout
31(30(29|28|27(26(25|24|23(22(21(20|19|18|17|16|15|14|13|12|11|10|9 |8 |7 211 0%
&
status =
S
syndrome <
=
&
=
S
aQ
=
Table 360 - DESTROY_RQT Output Structure Field Descriptions
Offset | Bits Name Description
00h 31:24 |status
04h 31:0 syndrome
08h- 64 reserved
0Ch
12.12.4 QUERY_RQT - Query RQT
The QUERY RQT command retrieves a snapshot of the current RQT Context entry.
Table 361 - QUERY_RQT Input Structure Layout
31(30(29|28|27(26(25|24|23(22(21(20|19|18|17|16|15|14|13|12|11|10|9 |8 |7 211 0%
&
opcode §_
op_mod §_
rqtn g;g
(=]
Q
=
Table 362 - QUERY_RQT input Structure Field Descriptions
Offset | Bits Name Description Access
00h 31:16 |opcode
Mellanox Technologies 270

J

12.13

Table 362 - QUERY_RQT input Structure Field Descriptions

Offset | Bits Name Description Access
04h 15:0 op_mod Must be 0
08h 23:0 rqtn RQT Context number
0Ch 31:0 reserved
Table 363 - QUERY_RQT Output Structure Layout
31(30(29(28(27|26(25|24|23|22|21/20|19|18|17|16|15(14|13|12[11|10[9 |8 |7 |6 |5|4 (3|2 |1 0%
&
S
status =
d £
syndrome L
(=}
o0
S
Q
=
rqt_context S
&

(See Table 58, “RQT Context Format,” on page 98)

Table 364 - QUERY_RQT Output Structure Field Descriptions

Offset Bits Name Description
00h 31:24 status
04h 31:0 syndrome
08h-0Ch |64 reserved
20h-... [1952 rqt_context RQT Context Entry

(See Table 58, “RQT Con-
text Format,” on page 98)

Receive Memory Pool (RMP) Commands

The following commands are used for controlling RMP resources (RMP is discussed in detail in
Section 7.10, “Receive Memory Pool (RMP),” on page 104).

Table 365 - RMP Commands Overview

Mnemonic Command Description Reference
CREATE_RMP Create RMP Allocate and initialize a new 12.13.1 CREATE_RMP — Create
Receive Memory Pool context | Receive Memory Pool
MODIFY RMP Modify RMP Modify a Receive Memory 12.13.2 MODIFY_RMP — Modify
Pool context Receive Memory Pool
DESTROY_RM | Destroy RMP Destroy a Receive Memory 12.13.3 DESTROY_RMP — Destroy a
P Pool context Receive Memory Pool Context

Mellanox Technologies

271

J

Table 365 - RMP Commands Overview (Continued)

Mnemonic

Command

Description

Reference

QUERY_RMP

Query RMP

Retrieves a snapshot of the
current Receive Memory Pool | Receive Memory Pool
context

12.13.4 QUERY RMP — Query

12.13.1 CREATE_RMP - Create Receive Memory Pool

CREATE RMP command creates new Receive Memory Pool (RMP) Context. The command
allocates an RMP Context. The command then takes the RMP Context entry from the input mail-
box and uses it to initialize the newly created RMP object. On successful completion, an
rmp_number is returned for future reference to the created RMP Context.
Table 366 - CREATE_RMP Input Structure Layout

31130(29(28(27|26(25(24|23(22(21|20(19|18|17|16|15|14|13 (1211|109 (8 |7 |6 |5 |4 |3 |2 |1 %
&
opcode §
op_mod §
S
(o]
=
(=3
Q
=
rmp_context §
(See Table 64, “RMP Context Format,” on page 105) !
Table 367 - CREATE_RMP Input Structure Field Descriptions
Offset Bits Name Description
00h 31:16 |opcode
04h 15:0 op_mod Must be 0
20h-... [1984 rmp_context RMP Context
(See Table 64, “RMP Con- | The list of fields that should be specified in the RMP context are
text Format,” on page 105) |listed in Table 66, “CREATE_RMP and MODIFY RMP Bitmask,”
on page 106
Table 368 - CREATE_RMP Output Structure Layout
3113029 |28(27/26(25(24(23(22|21/20(19(18|17|16|15|14|13|12/11|10{9 |8 |7 |6 |54 |3 |2 |1 :Og
&
(=)
status =]
syndrome §_
&
rmpn)
(=]
Q
=
Mellanox Technologies 272

J

Table 369 - CREATE_RMP Output Structure Field Descriptions

Offset | Bits Name Description

00h 31:24 |status

04h 31:0 syndrome

08h 23:0 rmpn RMP Context Number

0Ch 31:0 reserved

12.13.2 MODIFY_RMP - Modify Receive Memory Pool

MODIFY_ RMP command modifies fields in the Receive Memory Pool (RMP) Context. The
command is executed atomically on the RMP Context. The command takes a bitmask to deter-
mine which fields to update in the RMP Context. In order to enforce correct state transition, the
command also takes the RMP current state as an input. If the current state from the input does not
match the existing RMP state, then the command fails (return code BAD RESOURCE STATE)
and the RMP remains unaffected.

Table 370 - MODIFY_RMP Input Structure Layout

31(30(29(28(27|26(25|24|23|22|21/20|19|18|17|16|15/14|13|12/11|10| 9 |8 |7 |6 |54 |3 |2 |1|0

opcode

op_mod

rmp_state rmpn

modify bitmask[63:32]

modify_bitmask[31:0]

rmp_context
(See Table 64, “RMP Context Format,” on page 105)

40T (UDT-UST | UPI | HOT [UDO0 | U80 | U0 [YOO |39SPO

Table 371 - MODIFY_RMP Input Structure Field Descriptions

Offset Bits Name Description

00h 31:16 |opcode

04h 15:0 op_mod Must be 0

08h 31:28 |rmp_state Current RMP state
Encoding is the same as in RMP context

08h 23:0 rmpn RMP Context Number

Mellanox Technologies 273 J

Table 371 - MODIFY_RMP Input Structure Field Descriptions

Offset Bits Name Description
10h 31:0 modify bitmask[63:32] Bitmask that controls the fields to update in the RQ Context
See See Table 66, “CREATE_RMP and MODIFY RMP Bitmask,”
on page 106 for more details
14h 31:0 modify bitmask[31:0]
20h-... [1984 rmp_context RMP Context Entry.
(See Table 64, “RMP Con- |Only fields requested by the mask should be valid, other fields are
text Format,” on page 105) |reserved.

Table 372 - MODIFY_RMP Output Structure Layout

31(30(29(28(27(26|25|24(23|22|21(20(19|18|17|16|15|14|13|12|11|10|9 (8 |7 |6 |5 | 4 2 %
&
status S
syndrome §
2
=
(=3
a
=
Table 373 - MODIFY_RMP Output Structure Field Descriptions
Offset | Bits Name Description
00h 31:24 |status
04h 31:0 syndrome
08h 23:0 reserved
0Ch 31:0 reserved
12.13.3 DESTROY_RMP - Destroy a Receive Memory Pool Context
The DESTROY_ RMP command destroys a Receive Memory Pool (RMP) Context and releases
the related HW resources.
Table 374 - DESTROY_RMP Input Structure Layout
31130(29(28(27|26(|25|24(23|22|21(20(19|18|17|16|15|14|13|12(11(10/ 9|8 |7 |6 |5 |4 2|1 %
&
opcode §
op_mod §_
rmpn §g
(=3
a
=
Mellanox Technologies 274

J

Table 375 - DESTROY_RMP Input Structure Field Descriptions

Offset | Bits Name Description
00h 31:16 |opcode
04h 15:0 op_mod Must be 0
08h 23:0 rmpn RMP Context number
0Ch 31:0 reserved

Table 376 - DESTROY_RMP Output Structure Layout

31130(29(28(27|26(25|24(23|22|21({20(19|18|17|16|15|14 1312|1110/ 9|8 |7 |6 |5 |4 2|1 %
&
status =
S
syndrome <
=
2
=
S
a
=
Table 377 - DESTROY_RMP Output Structure Field Descriptions
Offset | Bits Name Description
00h 31:24 |status
04h 31:0 syndrome
08h- 64 reserved
0Ch
12.13.4 QUERY_RMP - Query Receive Memory Pool
The QUERY_ RMP command retrieves a snapshot of the current RMP Context entry. The RMP
state and values are not affected by the QUERY RMP command.
Table 378 - QUERY_RMP Input Structure Layout
31130(29(28(27|26(|25|24(23|22|21({20(19|18|17|16|15|14 1312|1110/, 9|8 |7 |6 |5 |4 2|1 %
&
opcode §-
op_mod §
()
rmpn 2
(=3
a
=
Mellanox Technologies 275

J

12.14

Table 379 - QUERY_RMP input Structure Field Descriptions

Offset | Bits Name Description Access
00h 31:16 |opcode
04h 15:0 op_mod Must be 0
08h 23:0 rmpn RMP Context number
0Ch 31:0 reserved
Table 380 - QUERY_RMP Output Structure Layout
31(30(29(28(27|26(25|24|23|22|21/20|19|18|17|16|15(14|13|12[11|10[9 |8 |7 |6 |5|4 (3|2 |1 0%
&
S
status =
d £
syndrome L
(=}
%
)
=
rmp_context S
=

(See Table 64, “RMP Context Format,” on page 105)

Table 381 - QUERY_RMP Output Structure Field Descriptions

Offset Bits Name Description
00h 31:24 |status
04h 31:0 syndrome
08h-10h |64 reserved
20h-... [1984 rmp_context RMP Context Entry.

(See Table 64, “RMP Con-
text Format,” on page 105)

Flow Table Commands

The commands in Table 382 are used for configuring Flow Tables that are used in packet pro-
cessing flows. The tables are built of Flows, where a packet attempts to match one by one accord-
ing to Flow order. A Flow is defined by the values of specific headers. Consecutive Flows (1 or
more) matching the same headers are defined as a Flow Group.

Table 382 - Flow Table Commands Overview

Mnemonic

Command

Description

Reference

CREATE_FLOW_TABLE

Allocate
Table

a new Flow

12.14.1 CREATE_FLOW_TABLE -

Allocate a New Flow Table

Mellanox Technologies

276

J

Table 382 - Flow Table Commands Overview

Mnemonic

Command

Description

Reference

DESTROY FLOW _TABLE

De-allocate a Flow
Table

12.14.3 DESTROY_FLOW TABLE -
De-allocate a Flow Table

QUERY_FLOW_TABLE Query the flow table 12.14.5 QUERY_FLOW_TABLE -
context Query Flow Table
SET FLOW_TABLE ROOT Set Flow Table Root 12.14.4 SET FLOW TABLE ROOT -

Set Flow Table Root

CREATE FLOW_GROUP

Define a new Flow
Group

12.14.6 CREATE_ FLOW_GROUP -
Define a New Flow Group

DESTROY FLOW_GROUP

De-allocate a Flow
Group

12.14.7 DESTROY_FLOW_GROUP -
De-allocate a Flow Group

QUERY_FLOW_GROUP

Query a flow group of
specific table

12.14.8 QUERY_FLOW_GROUP -
Query Flow Group

SET FLOW_TABLE ENTRY Set a Flow Table Entry 12.14.9 SET FLOW_TABLE ENTRY
- Set Flow Table Entry

QUERY_FLOW_TABLE_EN- Query a Flow Table 12.14.10 QUERY _-

TRY Entry FLOW_TABLE ENTRY - Query Flow
Table Entry

DELETE FLOW_TABLE EN- Invalidate a Flow Table 12.14.11 DELETE -

TRY Entry FLOW_TABLE_ENTRY - Invalidate

Flow Table Entry

12.14.1 CREATE_FLOW_TABLE - Allocate a New Flow Table

The command allocates a new Flow Table for one of the stages of packet processing. It returns a
handle for future reference to this table.

Table 383 - CREATE_FLOW _TABLE Input Structure Layout

31(30(29(28(27|26(25|24|23|22|21/20|19|18|17|16|15|14 13|12

opcode

op_mod

table type

flow table context
(See Table 387, “FLOW TABLE CONTEXT Structure Layout,” on page 278)

UDE-U8T | Uyl |HOT [UD0-U80 | Y80 | U0 [YOO |I°SHO

Mellanox Technologies 277

J

Table 384 - CREATE_FLOW_TABLE - Input Structure Field Description

(See Table 387, “FLOW
TABLE CONTEXT Struc-
ture Layout,” on page 278)

Offset Bits Name Description
00h 31:16 |opcode
04h 15:0 op_mod
10h 31:24 |table type Table’s role in packet processing
0x0: NIC_RX
0x1: NIC_TX
18h-3Ch (320 flow table context Flow Table Context.

Table 385 - CREATE_FLOW_TABLE Output Structure Layout

3130|2928 (27(26(25(24(23|22|21|20(19[18[17[16|15|14|13|12/11|10{9 |8 |7 |6|5|4 |3 |2 |1 %
&
S
status =
syndrome §
table_id &
(=3
@
=
Table 386 - CREATE_FLOW _TABLE - Output Structure Field Description
Offset Bits Name Description
00h 31:24 status
04h 31:0 syndrome
08h 23:0 table id Table handler. Unique for the table_type and vport number
Table 387 - FLOW TABLE CONTEXT Structure Layout
3130|129 |28(27(26(25(24(23|22|21|20(19[18[17[16|15|14|13|12/11|10{9 |8 |7 |6 |5|4 |3 |2 |1 %
&
table_miss_ac- level : =
tion log_size =
table miss_id §
()
(o]
=
(=3
Q
=
o
N
=
Mellanox Technologies 278

J

Table 388 - FLOW TABLE CONTEXT Field Descriptions

Offset Bits Name Description
00h 31 reserved
27:24 |table_miss_action Table miss action. Indicates the behavior in case of table miss.
0x0: default_miss_table - go to default miss table according to table type
default mentioned in Section 7.11.4, “Characteristics of Flow Table Types,”
on page 114.
0x1: identified_miss_table - go to specific table identified by miss_table id.
Supported only when Flow_Table Properties.identified miss_table==1.
23:16 |level Location in table chaining hierarchy.
7:0 log_size Log 2 of the table size (given in number of flows).
04h 23:0 table_miss_id Valid when table_miss_action==identified_miss_table.
Identify the next table in case of miss in current table lookup.
Table type of miss_table id must be the same as table type of current table.
Flow table level requirements must be met with next table requirements
where the level of miss_table id must be > current table level as explained
in Section 7.11.3.3, “Flow Table Level,” on page 110.

12.14.2 MODIFY_FLOW_TABLE - Modify a Flow Table

The command modifies some properties of already allocated Flow Table. Supported only when
Flow_Table Properties.flow_table modify==1. See Table 151, “Flow Table Properties Field
Descriptions,” on page 206.
Table 389 - MODIFY_FLOW _TABLE Input Structure Layout

3130

29 (28|27

26(25|24|23|22

21

20

191817161514 |13(12|11(10{ 9 (8 |7 |6 |5 (4|3 2|1 |0

opcode

op_mod

modify field select

table_type

table id

flow table context

(See Table 387, “FLOW TABLE CONTEXT Structure Layout,” on page 278)

UDE-U8I (Upl |UOT [UDO0 | Y80 | U0 [YOO |I°SHO

Table 390 - MODIFY_FLOW_TABLE - Input Structure Field Description

Offset Bits Name Description
00h 31:16 |opcode
04h 15:0 op_mod

Mellanox Technologies 279

J

Table 390 - MODIFY_FLOW_TABLE - Input Structure Field Description

Offset Bits Name Description
0Ch 15:0 modify field select Bitmask indicates which fields to modify.
Bit 6x0: table_miss_action/table miss_id
10h 31:24 |table type Table’s role in packet processing
0x0: NIC RX
0x1: NIC TX
14h 23:0 table id Table handler. Created by Section 12.14.1, “CREATE FLOW_TABLE -
Allocate a New Flow Table,” on page 277
18h-3Ch (320 flow table context Flow Table Context.
(See Table 387, “FLOW
TABLE CONTEXT Struc-
ture Layout,” on page 278)

Table 391 - MODIFY_FLOW _TABLE Output Structure Layout

31130(29(28(27|26(25(24|23(22(21|20(19[18|17|16|15|14|13 1211|109 (8 |7 |6 |5 |4 2|1 %
&
status S
syndrome §
2
T
(=3
a
=
Table 392 - MODIFY_FLOW_TABLE - Output Structure Field Description
Offset Bits Name Description
00h 31:24 status
04h 31:0 syndrome
12.14.3 DESTROY_FLOW_TABLE - De-allocate a Flow Table
The command de-allocates an empty Flow Table. When completed, all resources allocated for
this table are free, and the device maintains the semantics of an empty table.
Table 393 - DESTROY_FLOW _TABLE Input Structure Layout
31130(29(28(27|26(|25|24(23|22|21({20(19|18|17|16|15|14 1312|1110/ 9|8 |7 |6 |5 |4 2|1 %
&
opcode §_
op_mod §_
2
=
Mellanox Technologies 280

J

Table 393 - DESTROY_FLOW _TABLE Input Structure Layout

31(30(29(28(27|26(25|24|23|22|21/20|19|18|17|16|15/14|13|12/11|10| 9 |8 |7 |6 |54 |3 |2 |1|0

table type

table id

UDE-U8T | UPl | HOT [UOO0|IPSPO

Table 394 - DESTROY_FLOW _TABLE - Input Structure Field Descriptions

Offset Bits Name Description

00h 31:16 |opcode

04h 15:0 op_mod

10h 31:24 |table type Table’s role in packet processing
0x0: NIC receive
0x1: NIC transmit

14h 23:0 table_id Table handler. Created by Section 12.14.1, “CREATE FLOW_TABLE -
Allocate a New Flow Table,” on page 277

Table 395 - DESTROY_FLOW_TABLE Output Structure Layout

31130(29(28(27|26|25|24|23|22|21(20(19|18|17|16|15|14|13|12|11(10|9 |8 |7 |6 (5|43 |2|1|0

status

syndrome

UD0-U80 | U¥0 | HOO [I°SHO

Table 396 - DESTROY_FLOW _TABLE - Output Structure Field Description

Offset Bits Name Description

00h 31:24 status

04h 31:0 syndrome

Mellanox Technologies 281

J

12.14.4 SET_FLOW_TABLE_ROOT - Set Flow Table Root

This commands defines or replaces the root table for the specified Flow Table Type, with the
Flow Table given by table_id. The existing root table will be disconnected and all its resources
will remain.

Table 397 - SET_FLOW _TABLE_ROOT Input Structure Layout

31(30(29(28(27|26(25|24|23|22|21/20|19|18|17|16|15/14|13|12|11|10| 9 |8 |7 |6 |54 |3 |2 |1|0

opcode

op_mod

table type

table id

UDE-UDT | UBT [UrI |UOT [UDO | U80 | U0 [UOO |I°SPO

Table 398 - SET_FLOW_TABLE_ROOT - Input Structure Field Descriptions

Offset Bits Name Description

00h 31:16 |opcode

04h 15:0 op_mod

10h 31:24 |table type Table’s role in packet processing
0x0: NIC receive
0x1: NIC transmit

14h 23:0 |table_id Table handler. Created by Section 12.14.1, “CREATE_FLOW_TABLE -
Allocate a New Flow Table,” on page 277

Table 399 - SET_FLOW_TABLE_ROOT Output Structure Layout

31130(29(28(27|26|25|24|23|22|21(20(19|18|17|16|15|14|13|12|11(10|/9 |8 |7 |6 (5|43 |2|1|0

status

syndrome

UD0-U80 | U¥0 | HOO [I°SHO

Mellanox Technologies 282 J

Table 400 - SET_FLOW _TABLE_ROOT - Output Structure Field Description

Offset Bits Name Description
00h 31:24 status
04h 31:0 syndrome

12.14.5 QUERY_FLOW_TABLE - Query Flow Table

The command returns a Flow Table context, as it was created by “CREATE -
FLOW_TABLE - Allocate a New Flow Table”.
Table 401 - QUERY_FLOW _TABLE Input Structure Layout

31130(29(28(27|26(25(24|23(22|21|20(19|18|17|16|15|14|13 (1211|109 (8 |7 |6 |5 |4 |3 |2 |1 %
&
opcode §
op_mod §
()
(o]
=
(=3
@
=
table type =
table_id 5
%
&
(9%}
@
=
Table 402 - QUERY_FLOW_TABLE Input Structure Field Descriptions
Offset Bits Name Description
00h 31:16 |opcode
04h 15:0 op_mod
10h 31:24 |table type Table’s role in packet processing
0x0: NIC receive
14h 23:0 table_id Table handler. Created by “CREATE FLOW_TABLE -
Allocate a New Flow Table”.
Table 403 - QUERY_FLOW_TABLE Output Structure Layout
3113029 |28(27/26(25(24(23(22|21|20(19(18|17|16|15|14|13|12/11|10{9 |8 |7 |6 |54 |3 |2 |1 :Og
&
status §
d =
syndrome =
Mellanox Technologies 283

J

Table 403 - QUERY_FLOW_TABLE Output Structure Layout

3130

29128

27

26(25|24(23|22(21|20(19|18|17|16|15|1413|12|11|10/9 |8 | 7|6 |54 |32 |1|0

flow table context
(See Table 387, “FLOW TABLE CONTEXT Structure Layout,” on page 278)

UDE-UST [Ur[-U8O|ISHO

Table 404 - QUERY_FLOW_TABLE Output Structure Field Descriptions

Offset | Bits Name Description
00h 31:24 |status
04h 31:0 syndrome
18h- 320 flow table context Flow Table Context.
3Ch (See Table 387, “FLOW
TABLE CONTEXT Struc-
ture Layout,” on page 278)

12.14.6 CREATE_FLOW_GROUP - Define a New Flow Group

The command defines a new group of Flows inside a Flow Table. The Group is defined by a
range of Flows inside a Flow Table, and the parameters of all Flows in the Group should match a
packet. The command returns a handle for future reference to this Flow Group.

Table 405 - CREATE_FLOW_GROUP Input Structure Layout

3130

29128

27

26(25|24(23|22(21|20(19|18|17|16|15|1413|12|11|10/9 |8 | 7|6 |54 |32 |1|0

opcode

op_mod

table_type

table id

start_flow_index

end flow_index

match_criteria_enable

UD€ [U8E-UST| UPC [UOT |UDT | UBT |UPI |HOT [UDO0 | Y80 | U0 [YOO |I°SHO

Mellanox Technologies 284 J

Table 405 - CREATE_FLOW_GROUP Input Structure Layout

31(30(29(28(27|26(25|24|23|22|21|20|19|18|17|16|15/14|13|12|11|10| 9 |8 |7 |6 |54 3|2 |1]|0

match_criteria
(See Table 407, “Flow Table Entry Match Parameters Format,” on page 285)

D4€-U0YT | UDET-UOY | I°SHO

Table 406 - CREATE_FLOW _GROUP - Input Structure Field Description

Offset Bits Name Description

00h 31:16 |opcode

04h 15:0 op_mod

10h 31:24 |table type Table’s role in packet processing
0x0: NIC receive
0x1: NIC transmit

14h 23:0 |table_id Table handler. Created by Section 12.14.1, “CREATE_FLOW_TABLE -
Allocate a New Flow Table,” on page 277.

1Ch 31:0 start flow_index The first Flow included in the group.

24h 31:0 end flow_index The last Flow included in the group.

3C 7:0 match_criteria_enable Bitmask representing which of the headers and parameters in match_crite-

ria are used in defining the Flow. Unused parameters are reserved, and do
not participate in matching packets to the Flow.

0: outer_headers

1: misc_parameters

2: inner_headers

other: reserved

40h- 4096 match_criteria The parameters defining all the flows belonging to the group. Cleared bits
23Ch (See Table 407, “Flow indicate that the appropriate bit in the Flow is not matched to the incoming
Table Entry Match Parame- | packet.

ters Format,” on page 285)

Table 407 - Flow Table Entry Match Parameters Format

31/30(29(28|27(26(25(24(23(22|21|20|19|18|17|16|15|14|13(12(11|10/ 9 |8 | 7|6 |54 |3 |2 |1 |0

outer_headers
(See Table 409, “Flow Table Entry Match Set Layer 2-4 Format,” on page 286)

misc_parameters
(See Table 415, “Flow Table Entry Match Set Misc Parameters Format,” on page 289)

UDL-U0¥ | UOE-UO00 | 3°SPO

Mellanox Technologies 285 J

Table 407 - Flow Table Entry Match Parameters Format

31(30(29(28(27|26(25|24|23|22|21|20(19(18|17(16|15[14|13|12/11|{10/9 |8 (7|6 [5|4 |3 |2 |1 0%
&
o0
S
7
93]
Q
=
Q
(=}
7
o
O
=
Table 408 - Flow Table Entry Match Parameter Field Description
Offset Bits Name Description
00h- 512 outer headers Outer-most packet headers.
3Ch (See Table 409, “Flow
Table Entry Match Set
Layer 2-4 Format,” on
page 286)
40h- 512 misc_parameters Miscellaneous packet headers and Flow parameters
7Ch (See Table 415, “Flow
Table Entry Match Set
Misc Parameters Format,”
on page 289)
Table 409 - Flow Table Entry Match Set Layer 2-4 Format
31(30(29(28(27|26(25|24(23|22|21|20(19(18|17(16|15[14|13|12|11|{10/9 (8 (7|6 5|4 |3 |2 |1 0%
&
. (=)
smac[47:16] S
smac[15:0] ethertype §
. S
dmac[47:16] ®
dmac[15:0] ? é” first_vid -
2 |e e
=
ip_protocol ip_dscp ip_ec % 2 o tep_flags
n BB E =
I = =3
=R
tcp_sport tep_dport 5
%
=
udp_sport udp_dport CE_
src_ipv4/src_ipv6 §_
Y
Q
=

Mellanox Technologies 286 J

Table 409 - Flow Table Entry Match Set Layer 2-4 Format

31130{29

28|27

26

25|24)23|22|21

20

19

18/17|16|15|14|13|12{11{10{9 (8 |7 |6 |5|4|3|2|1|0

dst_ipv4/dst_ipv6

YOE-v0¢ | 198O

Table 410 - Flow Table Entry Match Set Layer 2-4 Field Description

Offset Bits Name Description
00h 31:0 smac[47:16] Source MAC address of incoming packet.
04h 31:16 smac[15:0]
15:0 ethertype Incoming packet Ethertype - this is the Ethertype following the last VLAN
tag of the packet.
08h 31:0 dmac[47:16] Destination MAC address of incoming packet.
0Ch 31:16 dmac[15:0]
15:13 first prio Priority of first VLAN tag in the incoming packet. Valid only when
cvlan_tag==1 or svlan_tag==1.
12 first_cfi CFI bit of first VLAN tag in the incoming packet. Valid only when
cvlan_tag==1 or svlan_tag==1.
11:0 first_vid VLAN ID of first VLAN tag in the incoming packet. Valid only when
cvlan_tag==1 or svlan_tag==1.
10h 31:24 ip_protocol IP protocol.
23:18 ip_dscp Differentiated Services Code Point derived from Traffic Class/TOS field
of IPv6/v4
17:16 ip_ecn Explicit Congestion Notification derived from Traffic Class/TOS field of
IPv6/v4
15 cvlan_tag The first vlan in the packet is c-vlan (0x8100). cvlan_tag and svlan_tag
cannot be set together
14 svlan_tag The first vlan in the packet is s-vlan (0x8a88). cvlan_tag and svlan_tag
cannot be set together.
13 frag Packet is an IP fragment.
8:0 tep_flags TCP flags.
Bit 0: FIN
Bit 1: SYN
Bit 2: RST
Bit 3: PSH
Bit 4: ACK
Bit 5: URG
Bit 6: ECE
Bit 7: CWR
Bit 8: NS

Mellanox Technologies 287

Table 410 - Flow Table Entry Match Set Layer 2-4 Field Description

Offset Bits Name Description
14h 31:16 tcp_sport TCP source port.
tep and udp sport/dport are mutually exclusive.
15:0 tcp_dport TCP destination port.
tep and udp sport/dport are mutually exclusive.
1Ch 31:16 udp_sport UDP source port.
tep and udp sport/dport are mutually exclusive.
15:0 udp_dport UDP destination port.
tep and udp sport/dport are mutually exclusive.
20h- 128 src_ipv4/src_ipv6 IP source address of incoming packets.
2Ch This field should be qualified by an appropriate ethertype.

For Ipv6 - See Table 411, “IPv6 Address Layout,” on page 288
For Ipv4 - See Table 413, “IPv4 Address Layout,” on page 288

30h- 128 dst_ipv4/dst_ipv6 IP destination address of incoming packets.

3Ch This field should be qualified by an appropriate ethertype.

For Ipv6 - See Table 411, “IPv6 Address Layout,” on page 288
For Ipv4 - See Table 413, “IPv4 Address Layout,” on page 288

Table 411 - IPv6 Address Layout

3130|2928 (27/26(25(24(23|22|21|20(19(18|17|16|15|14|13|12/11|10{9 |8 |7 |6 |54 |3 |2 |1 0%
&
ipv6 §
S
Q
=
Table 412 - IPv6 Address Field Descriptions
Offset Bits Name Description Access
00h- 128 ipv6 Ipv6 address
0Ch
Table 413 - IPv4 Address Layout
3130|2928 (27/26(25(24(23|22|21|20(19(18|17|16|15|14|13|12/11|10{9 |8 |7 |6 |5|4 |3 |2 |1 0%
&
(=)
(=}
=
S
o0
=
. (=3
ipv4 @

Mellanox Technologies 288 J

Table 414 - IPv4 Address Field Descriptions

0Ch 31:0 | ipv4 IPv4 address

Table 415 - Flow Table Entry Match Set Misc Parameters Format

1514131211109876543210%
&
(=3
S
=
=
g
=
O .
g |2 outer second_vid
¢ |3
|"§
& |z °
o |@
A =
Q‘b
LUQ-
30
5 =
BE
g | |2
w w
o o
8 8 -
2| 2 a
8 8
I I

outer_ipv6_flow_label

UDE-UpT 40T [UDT [U8T | Ukl |UOT

Mellanox Technologies 289

J

Table 416 - Flow Table Entry Parameter Set Misc Fields

Offset Bits Name Description
08h 31:29 outer_second_prio Priority of second VLAN tag in the outer header of the incoming packet.
Valid only when outer_second_cvlan _tag ==1 or outer_second_svlan_tag
28 outer_second_cfi CFI bit of first VLAN tag in the outer header of the incoming packet. Valid
only when outer_second cvlan_tag ==1 or outer_second_svlan_tag ==1.
27:16 outer_second_vid VLAN ID of first VLAN tag the outer header of the incoming packet. Valid
only when outer_second cvlan_tag ==1 or outer_second_svlan_tag ==1.
0Ch 31 outer_sec- The second vlan in the outer header of the packet is c-vlan (0x8100). out-
ond cvlan_tag er_second_cvlan_tag and outer_second_svlan_tag cannot be set together.
30 inner_sec- The second vlan in the inner header of the packet is c-vlan (0x8100).
ond cvlan_tag inner_second_cvlan_tag and inner_second_svlan_tag cannot be set together.
29 outer_sec- The second vlan in the outer header of the packet is s-vlan (0x8a88). out-
ond svlan tag er_second_cvlan_tag and outer_second_svlan_tag cannot be set together.
1Ch 19:0 outer_ipv6 flow label | Flow label of incoming IPv6 packet (outer).

Table 417 - CREATE_FLOW_GROUP Output Structure Layout

31(30|29

28 (27

26(25|24(23|22|21|20

191817161514 |13(12|11(10| 9 (8 |7 |6 |5 (4|3 2|1 |0

status

syndrome

group_id

UD0 480 | Ut0 [40O |3°SPO

Table 418 - CREATE_FLOW_GROUP - Output Structure Field Description

Offset Bits Name Description
00h 31:24 status
04h 31:0 syndrome
08h 23:0 group_id Group handler. Unique for the table table_type, table_id and vport number.

Mellanox Technologies 290

J

12.14.7 DESTROY_FLOW_GROUP - De-allocate a Flow Group

The command de-allocates an empty Flow Group. When completed, all resources allocated for
this group are free.

Table 419 - DESTROY_FLOW_GROUP Input Structure Layout

31

30

292827

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

opcode

op_mod

table type

table id

group_id

D¢-UOT [UST |UPT | HOT [UD0| U80 | U0 | HOO |I°SHO

Table 420 - DESTROY_FLOW_GROUP Input Structure Field Description

Offset Bits Name Description

00h 31:16 |opcode

04h 15:0 op_mod

10h 31:24 |table type Table’s role in packet processing
0x0: NIC receive
0x1: NIC transmit

14h 23:0 table_id Table handler. Created by Section 12.14.1, “CREATE_FLOW_TABLE -
Allocate a New Flow Table,” on page 277.

18h 31:0 group_id Group handler. Created by Section 12.14.6, “CREATE_FLOW_GROUP -
Define a New Flow Group,” on page 284.

Table 421 - DESTROY_FLOW_GROUP Output Structure Layout

31130(29(28(27|26(25(2423(22(21|20(19[18|17|16(15|14|13 (1211|109 (8 |7 |6 |5 | 4 2|1 %
é
status =
S
syndrome S
(=n
S
o0
(=n
S
@
=
Mellanox Technologies 291

J

Table 422 - DESTROY_FLOW_GROUP Output Structure Field Descriptions

Offset | Bits Name Description Access
00h 31:24 |status
04h 31:0 syndrome
08h- 64 reserved
0Ch
12.14.8 QUERY_FLOW_GROUP - Query Flow Group
The command returns a Flow Table Group, as it was created by “CREATE -
FLOW_GROUP - Define a New Flow Group”.
Table 423 - QUERY_FLOW_GROUP Input Structure Layout
31(30(29(28(27|26|25(24(23(22|21|20(19|18|17|16|15|14|13|12|11|10|/9 |8 |7 |6 |5 |4 2110

opcode

op_mod

table type

table id

group_id

UDE-UDT | UBT [UP |UOT [UD0 | Y80 | U0 [UOO |I°SHO

Table 424 - QUERY_FLOW_GROUP Input Structure Field Descriptions

Offset Bits Name Description

00h 31:16 |opcode

04h 15:0 op_mod

10h 31:24 |table type Table’s role in packet processing
0x0: NIC receive
0x1: NIC transmit

14h 23:0 table id Table handler. Created by Section 12.14.1, “CREATE -
FLOW_TABLE - Allocate a New Flow Table,” on page 277.

18h 31:0 group_id Group handler. Created by Section 12.14.6, “CREATE -
FLOW_GROUP - Define a New Flow Group,” on page 284.

Mellanox Technologies

202

J

Table 425 - QUERY_FLOW_GROUP Output Structure Layout

3113012928 (27|26(25|24|23|22|21|20(19|18|17|16|15|14|13|/12|11(10{9 |8 |7 |6 |5 |4 |3 |2|1|0

syndrome

start_flow_index

end flow_index

match_criteria_enable

match_criteria
(See Table 407, “Flow Table Entry Match Parameters Format,” on page 285)

Table 426 - QUERY_FLOW_GROUP Output Structure Field Descriptions

00h 31:24 |status

04h 31:0 syndrome

1Ch 31:0 start_flow_index The first Flow included in the group.
24h 31:0 end flow_index The last Flow included in the group.
3C 7:0 match_criteria_enable Bitmask representing which of the headers and parameters in

match_criteria are used in defining the Flow. Unused parameters
are reserved, and do not participate in matching packets to the
Flow.

0: outer_headers

1: misc_parameters

other: reserved

40h- 4096 |match_criteria The parameters defining all the flows belonging to the group.
23Ch (See Table 407, “Flow Cleared bits indicate that the appropriate bit in the Flow is not
Table Entry Match Parame- | matched to the incoming packet.

ters Format,” on page 285)

Mellanox Technologies 293

D4€-U0PT | UDET-UOY (UD€ | USE-URT| UPT | UOT |UDT |U8T-U80 | U0 | HOO |I9SHO

J

12.14.9 SET_FLOW_TABLE_ENTRY - Set Flow Table Entry

The command adds a Flow to a Flow Table, inside a Flow Group. The Flow index determines the
matching-order of the Flow, relative to other Flows in the table.

Table 427 - SET_FLOW_TABLE_ENTRY Input Structure Layout

3130

292827

26(25|24(23(22 |21

20

191817161514 |13(12|11(10|{ 9 (8|7 (6|5 (4|3 |2|1 |0

opcode

op_mod

table type

table id

modify enable mask

flow_index

flow_context

(See Table 429, “FLOW_CONTEXT Structure Layout,” on page 295)

=4Oy |\ UOE-UPT | U0T |[UDT (UST | Uyl | HOT |UD0| U80 | U0 | HUOO |I°SHO

Table 428 - SET_FLOW_TABLE_ENTRY - Input Structure Field Descriptions

Offset

Bits

Name

Description

00h

31:16

opcode

04h

15:0

op_mod

0: Set new Entry.

1: Modify already existing entry. Valid only when HCA_ CAP.modify -
flow_en==1 for this table type. See Section 7.11.3.7, “Redefining a Flow,”
on page 112.

10h

31:24

table_type

Table’s role in packet processing
0x0: NIC receive
0x1: NIC transmit

14h

23:0

table id

Table handler. Created by Section 12.14.1, “CREATE_FLOW_TABLE -
Allocate a New Flow Table,” on page 277.

18h

7:0

modify enable mask

Bit Mask indicates which fields for already existing fields to modify
Valid only when op_mod==modify

Bit 0: action

Bit 1: flow_tag

Bit 2: Destination_List - (Size and List)

Bit 3: Flow_Counters - (Size and List)

See Section 7.11.3.7, “Redefining a Flow,” on page 112.

Mellanox Technologies 294

J

Table 428 - SET_FLOW_TABLE_ENTRY - Input Structure Field Descriptions

Offset Bits Name Description
20h 31:0 flow_index Flow index in the Flow Table. Index 0x0 is matched first.
40h-... |6208 flow_context Flow Table Entry Context

(See Table 429, “FLOW _-
CONTEXT Structure Lay-
out,” on page 295)

Table 429 - FLOW_CONTEXT Structure Layout

31130(29(28(27|26|25|24|23|22|21(20(19|18|17|16|15|14|13|12|11(10|/9 |8 |7 |6 (5|43 2|10

group_id

flow_tag

action

destination_list size

flow_counter list size

match_value
(See Table 407, “Flow Table Entry Match Parameters Format,” on page 285)

destination[0]/flow_counter[0]

destination[1]/flow_counter[1]

=0T E 1 YO0E-U80E | U0€-H00€ | UDAT-U0rT [UDEC-UOY | UDE-UDT | UST | Ul [UOT |UD0| U0 | Ur0 | HUOO [IPSHO

Table 430 - FLOW_CONTEXT Field Descriptions

Offset Bits Name Description

04h 31:0 group_id Group handler. Created by “CREATE _FLOW_GROUP - Define a
New Flow Group”.

Mellanox Technologies 295

J

Table 430 - FLOW_CONTEXT Field Descriptions

Offset | Bits Name Description
08h 23:0 flow_tag Software flow identifier which is reported in CQE.
flow_tag= 0x0 is invalid. Supported only when HCA CAP.flow_tag==1.
0Ch 15:0 action Bit mask indicating which actions to perform
Bit 0: ALLOW- proceed to the default next step defined for this Flow Table.
Bit 1: DROP - stop packet processing
Bit 2: FWD_DEST - forward the packet to destination list according to des-
tination_type.
Bit 3: COUNT - count the packet in the counters in the flow counter list.
10h 23:0 destination_list_size Handler of the size of destination list.
Valid only when action==FWD_DEST.
14h 23:0 flow_counter list size Number of flow counters following the destination list.
Valid when action [COUNT] is set.
40h- 4096 match_value Values of the packet headers and parameters that should match the Flow.
23Ch (See Table 407, “Flow Valid fields are defined by the match_criteria associated with the Flow
Table Entry Match Parame- | Group. Other fields are reserved.
ters Format,” on page 285)
300h-... |64 destination]...]/ Destination/Flow counter list. The first destination_list_size entries in the
flow_counterf...] list are destinations. The following flow_counter_list_size entries are flow
counters.
See Table 433, “Destination Format Structure Layout,” on page 297
See Table 435, “Flow Counter List Entry Format Structure Layout,” on
page 297

Table 431 - SET_FLOW_TABLE_ENTRY - Output Structure Layout

31130(29(28(27|26(25(2423(22(21|20(19|18|17|16|15|14|13 (1211|109 (8 |7 |6 |5 |4 |3 |2 |1 Ocog
&
status S
d £
syndrome =
(=}
o0
=
(=3
a
=
Table 432 - SET_FLOW_TABLE_ENTRY Output Structure Field Descriptions
Offset | Bits Name Description
00h 31:24 |status
04h 31:0 syndrome
Mellanox Technologies 296

J

Table 433 - Destination Format Structure Layout

3130|2928 (27/26(25(24{23|22|21|20(19(18|17|16|15|14|13|12/11|10{9 |8 |7 |6 |54 |3 |2 |1 0%
&
destination_type destination_id §
()
=~
=
Table 434 - Destination Format Field Descriptions
Offset Bits Name Description
00h 31:24 | destination_type Defines the destination type. Valid only when action [FWD_DEST] is set
1: FLOW_TABLE
2: TIR
23:0 destination_id When destination_type == FLOW_TABLE - destination is Flow Table Id.
When destination_type == TIR - destination is TIR.
Table 435 - Flow Counter List Entry Format Structure Layout
3113029 |28(27/26(25(24(23]22|21|20(19(18|17|16|15|14|13|12/11|10{9 |8 |7 |6 |54 |3 2|1 0%
&
flow_counter id §_
(=]
S
=

Table 436 - Flow Counter List Entry Format Field Descriptions

Offset Bits Name Description

00h 15:0 flow_counter id Flow counter handle

12.14.10QUERY_FLOW_TABLE_ENTRY - Query Flow Table Entry

The command returns a Flow Table Entry, as it was set by “SET_FLOW_TABLE ENTRY
- Set Flow Table Entry”. The Flow Format is defined by the Flow Group the Flow belongs
to. Reserved fields in the original Flow should not be queried by this command.

Table 437 - QUERY_FLOW _TABLE_ENTRY Input Structure Layout

31(30(29(28(27|26(25|24|23|22|21/20|19|18|17|16|15/14|13|12/11|{10| 9 |8 |7 |6 |54 |3 |2|1|0

opcode

op_mod

table_type

table id

Uyl 4ol [UD0|U80 [Uy0 | Y00 |IsHO

Mellanox Technologies 297 J

Table 437 - QUERY_FLOW_TABLE_ENTRY Input Structure Layout

flow_index

Table 438 - QUERY_FLOW_TABLE_ENTRY Input Structure Field Descriptions

00h 31:16 |opcode
04h 15:0 op_mod
10h 31:24 |table type Table’s role in packet processing
0x0: NIC receive
0x1: NIC transmit
14h 23:0 table_id Table handler. Created by Section 12.14.1, “CREATE _-
FLOW_TABLE - Allocate a New Flow Table,” on page 277.
20h 31:0 flow_index Flow index in the Flow Table.

Table 439 - QUERY_FLOW_TABLE_ENTRY Output Structure Layout

flow_context

(See Table 429, “FLOW_CONTEXT Structure Layout,” on page 295)

U0y (UDE-UPT | HOT (UD0 | U80 (U0 | U00 [I9SHO

Table 440 - QUERY_FLOW_TABLE_ENTRY Output Structure Field Descriptions

00h

31:24

status

Mellanox Technologies

298

J

Table 440 - QUERY_FLOW _TABLE_ENTRY Output Structure Field Descriptions

(See Table 429, “FLOW _-
CONTEXT Structure Lay-

out,” on page 295)

Offset | Bits Name Description
04h 31:0 syndrome
40h-... |6208 flow_context Flow Table Entry Context

12.14.11DELETE_FLOW_TABLE_ENTRY - Invalidate Flow Table Entry

The command renders a Flow Table Entry invalid. Once the command is completed, all
resources allocated for the Flow Table Entry are freed, and no more packets could match
this Flow.
Table 441 - DELETE_FLOW _TABLE_ENTRY Input Structure Layout

3130|2928 (27/26(25(24{23|22|21|20(19(18|17|16|15|14|13|12/11|10{9 |8 |7 |6 |54 |3 |2 |1 %
&
opcode §
op_mod §
()
(o]
=
(=3
@
=
table type :5;
table_id 5
%
T
o
=
flow_index §
[\
N
=
(9%}
@)
Table 442 - DELETE _FLOW _TABLE _ENTRY Input Structure Field Descriptions
Offset Bits Name Description
00h 31:16 |opcode
04h 15:0 op_mod
10h 31:24 |table type Table’s role in packet processing
0x0: NIC receive
0x1: NIC transmit
14h 23:0 table id Table handler. Created by Section 12.14.1, “CREATE -
FLOW_TABLE - Allocate a New Flow Table,” on page 277.
20h 31:0 flow_index Flow index in the Flow Table.
Mellanox Technologies 299

J

Table 443 - DELETE_FLOW _TABLE_ENTRY Output Structure Layout

31(30(29(28(27(26|25|24(23|22|21({20(19|18|17|16|15|14|13[12|11|10|9 (8 |7 |6 |5 | 4 211 0%
status =
syndrome §
2
T
S
A
Table 444 - DELETE _FLOW _TABLE_ENTRY Output Structure Field Descriptions
Offset | Bits Name Description
00h 31:24 |status
04h 31:0 syndrome
12.14.12ALLOC_FLOW_COUNTER - Allocate a Flow Counter
ALLOCATE FLOW_COUNTER command is used to allocate a new Flow counter set and
return its handle. The allocated counter is initialized to 0x0.
Table 445 - ALLOC_FLOW_COUNTER Input Structure Layout
31130(29(28(27|26(25(2423(22(21|20(19[18|17|16(15|14|13 (1211|109 (8 |7 |6 |5 | 4 2|1 0%
opcode §_
op_mod §
()
F
S
a
=
Table 446 - ALLOC_FLOW_COUNTER Input Structure Field Descriptions
Offset | Bits Name Description Access
00h 31:16 |opcode
04h 15:0 op_mod
08h- 64 reserved
0Ch
Table 447 - ALLOC_FLOW_COUNTER Output Structure Layout
31(30(29(28(27(26|25(24(23|22(21(20(19|18|17|16|15|14|13[12|11|10|9 (8 |7 |6 |5 | 4 21 0%
status S
syndrome §
Mellanox Technologies 300

J

Table 447 - ALLOC_FLOW_COUNTER Output Structure Layout

31(30(29|28|27|26(25|24|23|22(21|20|19(18|17|16|15|14|13|12|11|10{9 |8 |7 |6 |5 |4 |3 |21 0%
&
flow_counter_id °o§
S
Q
=
Table 448 - ALLOC_FLOW_COUNTER Output Structure Field Descriptions
Offset | Bits Name Description Access
00h 31:24 |status
04h 31:0 syndrome
08h 15:0 flow_counter id Flow counter handle.
0Ch 31:0 reserved
12.14.13DEALLOC_FLOW_COUNTER - De-Allocate Flow Counter
This command is used to release the resources allocated for a flow counter. A deallocated must
not be associated with any Flow.
Table 449 - DEALLOC_FLOW_COUNTER Input Structure Layout
31130(29(28(27|26(25(2423(22(21|20(19|18|17|16|15|14|13 (1211|109 (8 |7 |6 |5 |4 |3 |2 |1 0%
&
opcode §
op_mod §
flow_counter_id °o§
(=3
Q
=
Table 450 - DEALLOC_FLOW_COUNTER Input Structure Field Descriptions
Offset | Bits Name Description Access
00h 31:16 |opcode
04h 15:0 op_mod
08h 15:0 flow_counter id Flow counter handle.
0Ch 31:0 reserved
Table 451 - DEALLOC_FLOW_COUNTER Output Structure Layout
31130(29(28(27|26(25(2423(22(21|20(19|18|17|16|15|14|13 (1211|109 (8 |7 |6 |5 |4 |3 |2 |1 0%
&
status S
(=)
syndrome i~
=

Mellanox Technologies 301 J

Table 451 - DEALLOC_FLOW_COUNTER Output Structure Layout

31(30(29(28(27|26(25|24|23|22|21/20|19|18|17|16|15/14|13|12/11|10| 9 |8 |7 |6 |54 |3 |2 |1|0

UD0-U80 | 1°sJFO

Table 452 - DEALLOC_FLOW_COUNTER Output Structure Field Descriptions

Offset | Bits Name Description Access

00h 31:24 |status

04h 31:0 syndrome

08h- 64 reserved
0Ch

12.14.14QUERY_FLOW_COUNTER - Query Flow Counter

QUERY_FLOW_COUNTER command is used to query and reset the statistics collected by the
flow counter.

Table 453 - QUERY_FLOW_COUNTER Input Structure Layout

31(30(29(28(27|26(25|24|23|22|21/20|19|18|17|16|15/14|13|12|11|{10| 9 |8 |7 |6 |54 |3 |2 |1|0

opcode

op_mod

Iedo

UDT| U8I [UP1-U80| U0 | HOO |3°SHO

flow_counter id

Table 454 - QUERY_FLOW_COUNTER Input Structure Field Descriptions

Offset | Bits Name Description Access

00h 31:16 |opcode

04h 15:0 op_mod Must be 0

18h 31 clear Read and reset counter value.
When set to 1, HW will reset counters.
Valid only when number of flow_counter==0.

1Ch 15:0 flow_counter_id Flow counter handle.
When num_of counters!=0, must be aligned to 4.

Mellanox Technologies 302 J

Table 455 - QUERY_FLOW_COUNTER Output Structure Layout

31(30

29128

27

26(25124|23(22|21|20

1918|1716 151413 /12|11|10{ 9 |8 | 7|6 |5 | 4

status

syndrome

flow_statistics[0]

(See Table 491, “TRAFFIC_COUNTER Format Layout,” on page 315)

flow_statistics[1]

(See Table 491, “TRAFFIC_COUNTER Format Layout,” on page 315)

“=H40E | UOT-HOT | UDT-HOT | UD0-U80 | U0 | 400 |3°SHO

Table 456 - QUERY_FLOW_COUNTER Output Structure Field Descriptions

(See Table 491, “TRAF-
FIC_COUNTER Format
Layout,” on page 315)

num_of counters.

Each flow counter reports the number of packets/octets that hit
the Flow Entries this Flow counter was associated with.

Note that unallocated flow counters will be returned with
unknown value.

Offset | Bits Name Description Access
00h 31:24 |status
04h 31:0 syndrome
10h-... [128 flow_statistics]...] List of flow counters. The size of the list is equal to

12.15 L2 TABLE COMMANDS

This section describes the commands that SW should use to inform the device of its L2
addresses.

SW must use SET L2 TABLE ENTRY to set its L2 addresses in the stage defined in
Section 11.2, “HCA Driver Start-up,” on page 366.

If SW gets new L2 addresses after the driver start-up stage, it must also set these addresses using
the same command.

SW cannot reuse the same L2 Address entry before deleting it. That is, it cannot do SET twice
before DELETE of the previous one.

Note that these commands are allowed only when HCA_ CAP.vport group manager ==1.

Mellanox Technologies

303

J

12.15.1 SET_L2_TABLE_ENTRY - Set L2 Table Entry

The command adds an L2 address entry to the L2 table.
Table 457 - SET_L2 _TABLE_ENTRY Input Structure Layout

3130

2912827

26(25(24|23(22

21

20

19181716 |15/14|13|12|11|10| 9 | 8 | 7

opcode

op_mod

table index

UST | U1 [HOT-U80 | Uy0 | 40O [I9SHO

=
|§ 1 a
§ vlan Q
=
mac_address §_
(See Table 19, “MAC Address Layout,” on page 69) 'ﬁ
=
[\8}
(o]
=
W
Q
=
Table 458 - SET_L2 _TABLE_ENTRY - Input Structure Field Descriptions
Offset Bits Name Description
00h 31:16 |opcode
04h 15:0 op_mod
14h 23:0 table index Index in the L2 table.
Must be less that HCA CAP.log_max 12 table.
1Ch 12 vlan_valid When set to 1, vlan field is valid.
When set to 0, vlan field is not valid. Only MAC is valid.
11:0 vlan Ethernet vlan
20h-24h 64 |mac_address Mac address
(See Table 19, “MAC
Address Layout,” on
page 69)
Table 459 - SET_L2 _TABLE_ENTRY - Output Structure Layout
31(30(29(28(27|26(25|24|23|22|21/20|19|18|17|16|15/14|13|12[11|10{ 9 |8 |7 |6 |5|4 (3|2 |1 Ocog
&
status :8r'
syndrome §

Mellanox Technologies 304

J

Table 459 - SET_L2 TABLE_ENTRY - Output Structure Layout

31(30(29(28(27|26(25|24|23|22|21/20|19|18|17|16|15/14|13|12/11|10| 9 |8 |7 |6 |54 |3 |2 |1|0

UD0 | U80 |3°sPO

Table 460 - SET_L2_TABLE_ENTRY Output Structure Field Descriptions

Offset | Bits Name Description

00h 31:24 |status

04h 31:0 syndrome

12.15.2 QUERY_L2_TABLE_ENTRY - Query L2 Table Entry

The command returns an L2 table entry, as it was set by “SET L2 TABLE ENTRY - Set
L2 Table Entry”.

Table 461 - QUERY_L2_TABLE_ENTRY Input Structure Layout

31130(29(28(27|26|25|24|23|22|21(20(19|18|17|16|15|14|13|12|11(10|/9 |8 |7 |6 (5|43 |2|1|0

opcode

op_mod

table_index

UDE-U8T | Uyl |UD0-U80 | U0 | 400 | I°SHO

Table 462 - QUERY_L2 _TABLE_ENTRY Input Structure Field Descriptions

Offset Bits Name Description

00h 31:16 |opcode

04h 15:0 op_mod

14h 23:0 table index Index in the L2 table.
Must be less than HCA_CAP.log max_12 table.

Table 463 - QUERY_L2_TABLE_ENTRY Output Structure Layout

31(30(29(28(27|26(25|24|23|22|21/20|19|18|17|16|15/14|13|12/11|10| 9 |8 |7 |6 |54 |3 |2|1|0

status

syndrome

U0 | 400 |3*sPO

Mellanox Technologies 305 J

Table 463 - QUERY_L2_TABLE_ENTRY Output Structure Layout

31(30(29 (28|27

26(25|24|23|22

21

20

191817 |16|15/14|13 12|11 10| 9

U81-U80 [I9SPO

pI[eA” UBJA

vlan

oI

mac_address

(See Table 19, “MAC Address Layout,” on page 69)

UDE-U8T |Urc-uoc

Table 464 - QUERY_L2_TABLE_ENTRY Output Structure Field Descriptions

Offset | Bits Name Description
00h 31:24 |status
04h 31:0 syndrome
1Ch 12 vlan_valid When set to 1, vlan field is valid.
When set to 0, vlan field is not valid. Only MAC is valid.
11:0 vlan Ethernet vlan
20h-24h| 64 |mac_address Mac address.
(See Table 19, “MAC
Address Layout,” on
page 69)

12.15.3 DELETE_L2_TABLE_ENTRY - Invalidate Flow Table Entry

The command renders an L2 table entry invalid.
Table 465 - DELETE L2 TABLE ENTRY Input Structure Layout

31(30(29 (28|27

26(25|24|23|22

21

20

191817161514 |13|12|11[10| 9

opcode

op_mod

table index

DE-UST [UPT [HOT-UDO | Ur0 | YOO |I9SHO

Mellanox Technologies 306

J

12.16

Table 466 - DELETE L2 TABLE_ENTRY Input Structure Field Descriptions

Offset Bits Name Description
00h 31:16 |opcode
04h 15:0 op_mod
14h 23:0 table index Index in the L2 table.
Must be less than HCA_CAP.log max_12 table.

Table 467 - DELETE_L2_TABLE_ENTRY Output Structure Layout

31(30(29(28(27(26|25(24(23|22|21|20(19|18|17|16(15|14|13|12|11|10{9 (8 |7 |6 |54 |3 |2 |1 %
&

[

status =]

syndrome :%

=

o0

=

=)

Q

Table 468 - DELETE L2 TABLE_ENTRY Output Structure Field Descriptions

Offset | Bits Name Description
00h 31:24 |status
04h 31:0 syndrome

Vport Commands

The following commands are used to control and manage virtual ports state and context. Vports
and more information about using these commands are discussed in Section 3.1, “Port Model
Overview,” on page 109.

Table 469 - Vport Commands Overview

Command Description Reference
QUE- Query Vport and Uplink state. Section 12.16.1, “QUE-
RY_VPORT_S RY VPORT STATE — Query Vport
TATE State,” on page 308
MODI- Modify Vport and Uplink state Section 12.16.2, “MODI-
FY_VPORT_S FY VPORT STATE — Modify Vport
TATE State,” on page 309
QUE- Query NIC Vport Context Section 12.16.3, “QUE-
RY_NIC_VPO RY NIC VPORT CONTEXT —
RT_CONTEXT orv NT(C

Query NIC Vport Context,” on
page 310

Mellanox Technologies

307

J

Table 469 - Vport Commands Overview (Continued)

Command Description Reference
MODI- Modify NIC Vport Context Section 12.16.4, “MODI-
FY_NIC_VPO FY NIC VPORT CONTEXT —
RT_CONTEXT Modify NIC Vport Context,” on
page 311

12.16.1 QUERY_VPORT_STATE - Query Vport State

This command is used to get information about the nic_vports.
Table 470 - QUERY_VPORT_STATE Input Structure Layout

3130|129 |28(27(26(25(24(23|22|21|20(19(18|17[16|15|14|13|12/11|10{9 |8 |7 |6 |5|4 |3 |2 |1 0%
&
opcode §
op_mod §
(=]
(o]
=
S
Q
=
Table 471 - QUERY_VPORT_STATE Input Structure Field Descriptions
Offset | Bits Name Description Access
00h 31:16 |opcode
04h 15:0 op_mod 0: vnic_vport
0Ch 31:0 reserved
Table 472 - QUERY_VPORT_STATE Output Structure Layout
3130|2928 (27/26(25(24{23|22|21|20(19(18|17|16|15|14|13|12/11|10{9 |8 |7 |6 |54 |3 |2 |1 0%
&
status =
syndrome §
=
S
&
=
admin_state state 8
=
Table 473 - QUERY_VPORT_STATE Output Structure Field Descriptions
Offset | Bits Name Description Access

00h 31:24 |status

04h 31:0 syndrome

Mellanox Technologies 308 J

Table 473 - QUERY_VPORT_STATE Output Structure Field Descriptions

Offset | Bits Name Description Access

0Ch 7:4 admin_state The state required by SW
0x0: down - set port to down state
0x1: up - set port to up state

3:0 state port state

0x0: down - port is down
0x1: up - port is up
others - reserved

12.16.2 MODIFY_VPORT_STATE — Modify Vport State
Table 474 - MODIFY_VPORT_STATE Input Structure Layout

31(30(29(28(27|26(25|24|23|22|21/20|19|18|17|16|15(14|13|12|11|10[9 |8 |7 |6 |5|4 (3|2 |1 0%
&
S
opcode =
op_mod §
()
(o]
=
admin_state 8
=
Table 475 - MODIFY_VPORT_STATE Input Structure Field Descriptions
Offset | Bits Name Description Access
00h 31:16 |opcode
04h 15:0 op_mod 0: nic_vport
0Ch 7:4 admin_state 0x0: down - set port to down state
0x1: up - set port to up state
Table 476 - MODIFY_VPORT_STATE Output Structure Layout
3130|2928 (27/26(25(24(23|22|21|20(19(18[17|16|15|14|13|12/11|10{9 |8 |7 |6 |5|4 |3 |2 |1 Ocog
&
status S
(=)
syndrome =
=
S
(=}
o0
=
=
=

Mellanox Technologies 309 J

Table 477 - MODIFY_VPORT_STATE Output Structure Field Descriptions

Offset | Bits Name Description Access

00h 31:24 |status

04h 31:0 syndrome

08h- 31:0 reserved
0Ch

12.16.3 QUERY_NIC_VPORT_CONTEXT — Query NIC Vport Context
Table 478 - QUERY_NIC_VPORT_CONTEXT Input Structure Layout

31(30(29(28(27|26(25|24|23|22|21/20|19|18|17|16|15(14|13|12[11|10{ 9 |8 |7 |6 |5|4 (3|2 |1 0%
&

S

opcode =

op_mod §_

(=]

o0

=

allowed lis 8

t_type =

Table 479 - QUERY_NIC_VPORT_CONTEXT Input Structure Field Descriptions

Offset | Bits Name Description Access

00h 31:16 |opcode

04h 15:0 op_mod

0Ch 26:24 |allowed list_type Indicates which allowed list to query.
Definition of this field is described in nic_vport_context. See
Table 15, “NIC_Vport Context Layout,” on page 66.

Table 480 - QUERY_NIC_VPORT_CONTEXT Output Structure Layout

31(30(29(28(27|26(25|24|23|22|21/20|19|18|17|16|15/14|13|12|11|10| 9 |8 |7 |6 |54 |3 |2 |1|0

status

syndrome

nic_vport_context
(See Table 15, “NIC_Vport Context Layout,” on page 66)

=4Ol |YO0-U80 | Uv0 | HOO [I9SHO

Mellanox Technologies 310 J

Table 481 - QUERY_NIC_VPORT_CONTEXT Output Structure Field Descriptions

Offset | Bits Name Description Access
00h 31:24 |status
04h 31:0 syndrome
10h-... (2112 nic_vport_context nic_vport context. See Table 15, “NIC_Vport Context Layout,”
(See Table 15, on page 66
“NIC_Vport Context Lay-
out,” on page 66)
12.16.4 MODIFY_NIC_VPORT_CONTEXT — Modify NIC Vport Context
Table 482 - MODIFY_NIC_VPORT_CONTEXT Input Structure Layout
3130|2928 (27(26(25|24(23|22|21/20(19|18|17|16|15|14|13|12|11(10{9 |8 |7 |6 |5 |4 |3 |2|1|0
opcode

op_mod

field select

nic_vport_context

(See Table 15, “NIC_Vport Context Layout,” on page 66)

“=4OO0T | UDA-UD0 | UD0 | U0 | Ur0 | HO0O [3esHO

Table 483 - MODIFY_NIC_VPORT_CONTEXT Input Structure Field Descriptions

Offset | Bits Name Description Access
00h 31:16 |opcode
04h 15:0 op_mod
0Ch 31:0 field_select Selects fields out of nic_vport context to be modified.
fields definition
bit 2: addresses_list - allowed _list_type/allowed list_size/
addresses_list
bit 4: promisc - promisc_uc/promisc_mc/promisc_all
bit 6: mtu
100h-... |2112 nic_vport_context nic_vport context
(See Table 15,
“NIC_Vport Context Lay-
out,” on page 66)
Mellanox Technologies 311

J

Table 484 - MODIFY_NIC_VPORT_CONTEXT Output Structure Layout

31130(29(28(27|26(|25|24(23|22|21(20(19|18|17|16|15|14|13|12(11(10/9 |8 |7 |6 |54 (3|2 1|0

status

syndrome

Y50-4800|U¥00 | 400 |3°SPFO

Table 485 - MODIFY_NIC_VPORT_CONTEXT Output Structure Field Descriptions

Offset | Bits Name Description Access

00h 31:24 |status

04h 31:0 syndrome

08h- 31:0 reserved
0Ch

12.17 Vport Counters Commands

When a Vport is created, a set of traffic counters on this Vport will also be automatically created.
Vport counters are supported only when HCA CAP.vport_counters ==1.

Table 486 specifies the traffic counters for each Vport.
Table 486 - Vport Counters List

Counter Name Description

Received errors | Number of received error packets/octets

Transmit errors | Number of transmit error packets/octets

Received ETH |Number of received Ethernet broadcast packets/octets
broadcast

Transmitted | Number of transmitted Ethernet broadcast packets/octets
broadcast

Received ETH |Number of received Ethernet unicast packets/octets
uinicast

Transmitted ETH |Number of transmitted Ethernet unicast packets/octets
unicast

Received ETH |Number of received Ethernet multicast packets/octets
multicast

Transmitted ETH |Number of transmitted Ethernet multicast packets/octets
multicast

Mellanox Technologies 312 J

12.17.1 QUERY_VPORT_COUNTER - Query Vport Counter

QUERY_VPORT_COUNTER command is used to query and reset traffic counters on a specific
Vport.
Table 487 - QUERY_VPORT_COUNTER Input Structure Layout

31(30(29(28(27|26(25|24|23|22|21/20|19|18|17|16|15/14|13|12/11|{10| 9 |8 |7 |6 |54 |3 |2 |1]0

opcode

op_mod

Ied0

UDT| U8T |UyI1-UD0 | U80 | Ur0 | HOO [I°SHO

Table 488 - QUERY_VPORT_COUNTER Input Structure Field Descriptions

Offset | Bits Name Description Access

00h 31:16 |opcode

04h 15:0 op_mod 0: vport_counters
others: reserved

18h 31 clear Read and reset counter value

Table 489 - QUERY_VPORT_COUNTER Output Structure Layout

31(30(29(28(27|26(25|24|23|22|21/20|19|18|17|16|15/14|13|12/11|{10| 9 |8 |7 |6 |54 |3 |2|1|0

status

syndrome

received errors
(See Table 491, “TRAFFIC_COUNTER Format Layout,” on page 315)

transmit errors
(See Table 491, “TRAFFIC_COUNTER Format Layout,” on page 315)

received eth broadcast
(See Table 491, “TRAFFIC_COUNTER Format Layout,” on page 315)

transmitted eth broadcast
(See Table 491, “TRAFFIC_COUNTER Format Layout,” on page 315)

UD8-408 [UDL-UOL | UDT-HOT | YD T-HOT | UD0-U80 | U0 [Y00 |3°SHO

Mellanox Technologies 313 J

Table 489 - QUERY_VPORT_COUNTER Output Structure Layout

3130

29128

27

26(25|24(23|22|21|20

191817161514 |1312|11({10| 9 [8 | 7|6 |5 | 4

received eth unicast

(See Table 491, “TRAFFIC_COUNTER Format Layout,” on page 315)

transmitted eth unicast

(See Table 491, “TRAFFIC_COUNTER Format Layout,” on page 315)

received eth multicast

(See Table 491, “TRAFFIC_COUNTER Format Layout,” on page 315)

transmitted eth multicast

(See Table 491, “TRAFFIC_COUNTER Format Layout,” on page 315)

UD0Z-u0d | UDD-40D | 4D4d-U0d [UOV-UOV | UD6-U06 | 19SHO

Table 490 - QUERY_VPORT_COUNTER Output Structure Field Descriptions

Offset | Bits Name Description Access
00h 31:24 |status
04h 31:0 syndrome
10h- 128 received errors (See Number of received error packets/octets.
ICh Table 491, “TRAF-
FIC_COUNTER Format
Layout,” on page 315)
20h- 128 transmit errors (See Number of transmit error packets/octets.
2Ch Table 491, “TRAF-
FIC_COUNTER Format
Layout,” on page 315)
70h- 128 received eth broadcast (See | Number of received broadcast packets/octets.
7Ch Table 491, “TRAF-
FIC_COUNTER Format
Layout,” on page 315)
80h- 128 transmitted eth broadcast (| Number of transmitted broadcast packets/octets.
8Ch See Table 491, “TRAF-
FIC_COUNTER Format
Layout,” on page 315)
90h- 128 received eth unicast (See | Number of received unicast Ethernet packets/octets.
9Ch Table 491, “TRAF-
FIC_COUNTER Format
Layout,” on page 315)
Mellanox Technologies 314

J

Table 490 - QUERY_VPORT_COUNTER Output Structure Field Descriptions

Offset | Bits Name Description Access
AOh- 128 transmitted eth unicast (Number of transmitted unicast Ethernet packets/octets.
ACh See Table 491, “TRAF-
FIC_COUNTER Format
Layout,” on page 315)
BOh- 128 received eth multicast (See | Number of received multicast Ethernet packets/octets.
BCh Table 491, “TRAF-
FIC_COUNTER Format
Layout,” on page 315)
COh- 128 transmitted eth multicast (| Number of transmitted multicast Ethernet packets/octets.
CCh See Table 491, “TRAF-
FIC_COUNTER Format
Layout,” on page 315)
Table 491 - TRAFFIC_COUNTER Format Layout
31130(29(28(27|26(25(2423(22|21|20(19|18|17|16|15|14|13|12|11|10(9 |8 |7 |6 |5 211 O%
&
. (=3
packets[63:32] =
packets[31:0] £
. ()
octets[63:32] 2
octets[31:0] 3
=
Table 492 - TRAFFIC_COUNTER Field Descriptions
Offset | Bits Name Description Access
00h 31:0 packets[63:32] Upper bits of total number of packets.
04h 31:0 packets[31:0] Lower bits of total number of packets.
08h 31:0 octets[63:32] Upper bits of total number of octets.
0Ch 31:0 octets[31:0] Lower bits of total number of octets.

12.18 Miscellaneous Commands

This chapter describes miscellaneous commands not related to any specific HCA resource.

12.18.1 NOP Command

The NOP command creates a command completion event and has no other functions. See
Section 7.13.10.1, “Command Interface Completion Event,” on page 138.

Mellanox Technologies

315

This command is useful for debug as well as for checking that command mechanism works.
Table 493 - NOP Command Input Structure Layout

3130|2928 (27/26(25(24{23|22|21|20(19(18|17|16|15|14|13|12/11|10{9 |8 |7 |6 |54 |3 |2 |1 0%
&
opcode §
op_mod §
S
(o]
=
S
O
=
Table 494 - NOP Command Input Structure Field Descriptions
Offset | Bits Name Description Access
00h 31:16 |opcode
04h 15:0 op_mod
08h- 31:0 reserved
0Ch
Table 495 - NOP Command Output Structure Layout
3113029 |28(27/26(25(24(23]22|21/20(19(18|17|16|15|14|13|12/11|10{9 |8 |7 |6 |54 |3 |2 |1 0%
&
(=)
status =]
syndrome :ﬁr
(=]
oo
=
=
@
=

Table 496 - NOP Command Output Structure Field Descriptions

Offset | Bits Name Description Access

00h 31:24 |status

04h 31:0 syndrome

08h-0Ch |64 reserved

Mellanox Technologies 316 J

	Mellanox Adapters Programmer’s Reference Manual (PRM)
	Table of Contents
	List of Tables
	List of Figures
	Revision History
	About this Manual
	Intended Audience
	Related Documentation
	Documentation Conventions

	Part 1: Mellanox Adapters Operational Description
	1 Introduction
	1.1 Major Features Summary
	1.2 Hardware Interfaces
	1.2.1 Host Interface - PCI Express
	1.2.1.1 PCI Express
	1.2.1.2 NC-SI (DMTF-Compliant Management Link)
	1.2.1.3 I2C-Compatible

	1.2.2 Network Interface

	2 Operational Overview
	2.1 Software Interface
	2.2 HCA Configuration
	2.3 HCA Operation
	2.3.1 Work Queues
	2.3.2 Completion Queues and Completion Events
	2.3.3 Event Queues
	2.3.3.1 Interrupts

	2.3.4 HCA Memory Resources

	3 Networking and Stateless Offloads
	3.1 Networking Transport Objects
	3.1.1 Overview

	3.2 Networking Services Usage
	3.2.1 Ethernet

	3.3 Stateless Offloads
	3.3.1 Checksum Offload
	3.3.2 Large Send Offload (LSO)
	3.3.3 Receive Side Scaling (RSS)
	3.3.3.1 TIR Spreading Traffic Mechanism

	3.3.4 Transmit Side Scaling
	3.3.5 Interrupt Moderation
	3.3.6 Large Receive Offload (LRO)
	3.3.6.1 LRO Introduction and Device Capabilities
	3.3.6.2 LRO Session Creation
	3.3.6.3 LRO Session Termination
	3.3.6.4 Merging New Segments Into Existing LRO Session
	3.3.6.5 LRO Packet Scatter to Memory
	3.3.6.6 LRO CQE Fields Summary

	3.3.7 VLAN Insertion/Stripping
	3.3.8 Packet Padding (TX)
	3.3.9 Start of Packet Padding (RX)
	3.3.10 End of Packet Padding (RX)

	3.4 Self-Loopback Control Using Transport Domains
	3.5 Sniffer

	4 PCI Interface
	4.1 PCIe Compliance
	4.2 Capabilities Reporting
	4.3 Initialization Segment
	4.4 Data Interface
	4.4.1 PCIe Attributes

	5 Memory Resources and Utilization
	5.1 Interconnect Context Memory
	5.2 Memory Resources
	5.2.1 Address Translation Tables

	5.3 HCA Control Objects (Contexts)
	5.4 User Access Region

	6 Address Translation and Protection
	6.1 Virtual to Physical Address Translation and Protection Checks
	6.1.1 Address Translation Indirection

	6.2 Zero-Based Virtual Address Regions and Windows
	6.3 Reserved LKey
	6.4 Address Translation Control Structures
	6.4.1 MKey Context

	6.5 Memory Key Configuration (Creation)

	7 Software Interface
	7.1 ISSI - Interface Step Sequence ID
	7.1.1 ISSI History
	7.1.1.1 ISSI = 1

	7.2 User Access Region (UAR)
	7.2.1 UAR Sections
	7.2.2 UAR Page Format
	7.2.2.1 Blue Flame
	7.2.2.2 Sharing UARs

	7.3 NIC_Vport Context - NIC Virtual Port Context
	7.4 Work Queues
	7.4.1 Work Queues Structure and Access
	7.4.1.1 Send Queue
	7.4.1.2 Receive Queue

	7.4.2 Doorbell Record
	7.4.3 WQE Ownership
	7.4.3.1 Posting a Work Request to Work Queue
	7.4.3.2 Posting Work Request on Shared Receive Queue

	7.4.4 Work Request (WQE) Formats
	7.4.4.1 Send WQE Format
	7.4.4.1.1 Ctrl Segment
	7.4.4.1.2 Eth Segment and Padding Segment
	7.4.4.1.3 User-mode Memory Registration (UMR) WQE Format
	7.4.4.1.4 Send Data Segments
	7.4.4.1.5 Receive Data Segments

	7.4.4.2 Send WQE Construction Summary
	7.4.4.3 Receive WQE Format
	7.4.4.4 Shared Receive WQE Format

	7.5 Transport Interface Receive (TIR)
	7.6 Transport Interface Send (TIS)
	7.7 Receive Queue (RQ)
	7.7.1 RQ States Summary
	7.7.2 RQ Error Semantics
	7.7.2.1 Memory RQ with Inline Memory Queue
	7.7.2.2 RQ Associated with RMP

	7.8 RQ Table (RQT)
	7.9 Send Queue (SQ)
	7.9.1 SQ States Summary
	7.9.2 SQ Error Semantics
	7.9.3 Send WQE Inline Header
	7.9.3.1 Inline Modes

	7.10 Receive Memory Pool (RMP)
	7.10.1 RMP States Summary

	7.11 Flow Table
	7.11.1 Position in Processing Flow
	7.11.2 General Structure
	7.11.2.1 Match Criteria
	7.11.2.2 Processing Actions
	7.11.2.3 Flow Table Chaining
	7.11.2.4 Multi-Processing Paths
	7.11.2.5 Default Behavior
	7.11.2.6 Invalid Flows
	7.11.2.7 Packet Classification Ambiguities
	7.11.2.8 Flow Statistics
	7.11.2.9 Flow Tagging

	7.11.3 Configuration Interface
	7.11.3.1 Allocating a Flow Table
	7.11.3.2 Selecting the Root Flow Table
	7.11.3.3 Flow Table Level
	7.11.3.3.1 Flow Table Identifier

	7.11.3.4 Allocating a Match Criteria - Flow Groups
	7.11.3.4.1 Flow Group Identifier

	7.11.3.5 Allocating a Flow Counter
	7.11.3.6 Adding a Flow
	7.11.3.7 Redefining a Flow
	7.11.3.8 Freeing Resources
	7.11.3.9 Querying Device Database
	7.11.3.10 Special Flows Definition
	7.11.3.10.1 Prio-Tagged and Untagged Packets

	7.11.4 Characteristics of Flow Table Types
	7.11.4.1 NIC Receive
	7.11.4.2 NIC Transmit

	7.12 Completion Queues
	7.12.1 Completion Queue Buffer
	7.12.1.1 CQE Format

	7.12.2 CQ DoorBell Record
	7.12.3 Poll for Completion
	7.12.3.1 CQE Ownership
	7.12.3.2 Reporting Completions

	7.12.4 Request Completion Notification
	7.12.5 Completion Queue Update Error
	7.12.6 Resizing a CQ
	7.12.7 Completion With Error
	7.12.8 Completion Queue Context (CQC)
	7.12.9 CQ to EQ Remapping
	7.12.10 CQE Timestamping
	7.12.10.1 Conversion to Real Time
	7.12.10.2 Synchronization with Current Time

	7.13 Events and Interrupts
	7.13.1 Event Queues
	7.13.2 Event Queue Buffer
	7.13.2.1 EQE Ownership
	7.13.2.2 EQE Format
	7.13.2.3 EQ DoorBell Register

	7.13.3 Completion Events
	7.13.4 Polling on EQEs
	7.13.5 Sharing MSI-X/Interrupt Amongst EQs
	7.13.6 Event Queue Mapping
	7.13.7 Completion Events
	7.13.8 Asynchronous Events and Errors
	7.13.8.1 SQ/RQ Events
	7.13.8.2 Completion Queue Error Event

	7.13.9 Unaffiliated Events and Errors
	7.13.9.1 Internal Errors
	7.13.9.2 Port State Change Event

	7.13.10 HCA Interface Events
	7.13.10.1 Command Interface Completion Event
	7.13.10.2 Pages Request Event

	7.13.11 Event Queue Context (EQC)
	7.13.12 Hardware Interrupts
	7.13.13 Interrupt Moderation
	7.13.14 Completion Event Moderation
	7.13.15 Interrupt Frequency Moderation

	7.14 Command Interface
	7.14.1 HCA Command Queue
	7.14.1.1 Mailbox Format
	7.14.1.1.1 Calculating Mailbox Signatures

	7.14.1.2 Command Data Layout

	8 Initialization and Teardown
	8.1 Initialization
	8.1.1 Stage 1 - Device Boot From Attached NVMEM
	8.1.2 Stage 2 - PCI Device Initialization via Boot Software Enumeration

	8.2 HCA Driver Start-up
	8.3 HCA Driver Teardown and Re-initialization
	8.4 Physical port Initialization and Configuration

	Part 2: Advanced Mellanox Adapter Features
	9 Data Integrity
	9.1 Hardware-level Data Integrity
	9.2 Software-level Data Integrity - Control Objects’ Consistency Checks
	9.2.1 Device Configuration and Control Communication
	9.2.2 Memory-resident Control Objects
	9.2.3 Work Queues Elements Signature
	9.2.4 Completion and Event Queue Elements (CQEs and EQEs)

	10 Address Translation and Protection Enhancements
	10.1 Lightweight Memory Registration
	10.1.1 User-Mode Memory Registration (UMR)
	10.1.1.1 UMR Work Request Operation

	Part 3: Command Reference and Registers
	11 Command Registers
	11.1 Network Ports Registers
	11.1.1 PMTU - Port MTU Register
	11.1.2 PTYS - Port Type and Speed Register
	11.1.3 PAOS - Ports Administrative and Operational Status Register
	11.1.4 PFCC - Ports Flow Control Configuration Register
	11.1.5 PPCNT - Ports Performance Counters Register

	12 Command Reference
	12.1 Introduction
	12.2 Return Status Summary
	12.3 Initialization and General Commands
	12.3.1 QUERY_PAGES - Query Device Free Memory Pool Status
	12.3.2 MANAGE_PAGES - Driver Delivers Memory Pages for the Device Usage or Returns Pages
	12.3.3 QUERY_HCA_CAP – Query Device Capabilities
	12.3.3.1 HCA Device Capabilities
	12.3.3.2 Networking Offload Capabilities
	12.3.3.3 Flow Table Capabilities

	12.3.4 SET_HCA_CAP – Set Device Capabilities
	12.3.5 QUERY_ADAPTER – Query Adapter
	12.3.6 INIT_HCA – INIT HCA
	12.3.7 TEARDOWN_HCA – Tear-down HCA
	12.3.8 ENABLE_HCA
	12.3.9 DISABLE_HCA
	12.3.10 QUERY_ISSI
	12.3.11 SET_ISSI
	12.3.12 SET_DRIVER_VERSION
	12.3.13 ALLOC_PD - Allocate Protection Domain
	12.3.14 DEALLOC_PD - De-Allocate Protection Domain
	12.3.15 ALLOC_UAR - Allocate UAR
	12.3.16 DEALLOC_UAR - De-Allocate UAR
	12.3.17 CONFIG_INT_MODERATION - Configure Interrupt Moderation
	12.3.18 ALLOC_TRANSPORT_DOMAIN - Allocate Transport Domain
	12.3.19 DEALLOC_TRANSPORT_DOMAIN - De-Allocate Transport Domain

	12.4 Registers Access Commands
	12.4.1 ACCESS_REGISTER

	12.5 TPT Commands
	12.5.1 CREATE_MKEY – Create MKey Entry
	12.5.2 QUERY_MKEY – Query MKey Entry
	12.5.3 DESTROY_MKEY – Destroy MKey Entry
	12.5.4 QUERY_SPECIAL_CONTEXTS – Query Special Context Numbers

	12.6 EQ Commands
	12.6.1 CREATE_EQ – Create EQ
	12.6.2 DESTROY_EQ – Destroy EQ
	12.6.3 QUERY_EQ – Query EQ
	12.6.4 GEN_EQE – Generate Event Queue Entry

	12.7 CQ Commands
	12.7.1 CREATE_CQ – Create Completion Queue
	12.7.2 DESTROY_CQ – Destroy CQ
	12.7.3 QUERY_CQ – Query CQ
	12.7.4 MODIFY_CQ – Modify CQ Parameters

	12.8 TIR Commands
	12.8.1 CREATE_TIR – Create TIR
	12.8.2 MODIFY_TIR – Modify TIR
	12.8.3 DESTROY_TIR – Destroy TIR
	12.8.4 QUERY_TIR – Query TIR

	12.9 TIS Commands
	12.9.1 CREATE_TIS – Create TIS
	12.9.2 MODIFY_TIS – Modify TIS
	12.9.3 DESTROY_TIS – Destroy TIS
	12.9.4 QUERY_TIS – Query TIS

	12.10 Send Queue (SQ) Commands
	12.10.1 CREATE_SQ – Create Send Queue
	12.10.2 MODIFY_SQ – Modify Send Queue
	12.10.3 DESTROY_SQ – Destroy a Send Queue Context
	12.10.4 QUERY_SQ – Query Send Queue

	12.11 Receive Queue (RQ) Commands
	12.11.1 CREATE_RQ – Create Receive Queue
	12.11.2 MODIFY_RQ – Modify Receive Queue
	12.11.3 DESTROY_RQ – Destroy a Receive Queue Context
	12.11.4 QUERY_RQ – Query Receive Queue

	12.12 RQT Commands
	12.12.1 CREATE_RQT – Create RQT
	12.12.2 MODIFY_RQT – Modify RQ table
	12.12.3 DESTROY_RQT – Destroy RQT
	12.12.4 QUERY_RQT – Query RQT

	12.13 Receive Memory Pool (RMP) Commands
	12.13.1 CREATE_RMP – Create Receive Memory Pool
	12.13.2 MODIFY_RMP – Modify Receive Memory Pool
	12.13.3 DESTROY_RMP – Destroy a Receive Memory Pool Context
	12.13.4 QUERY_RMP – Query Receive Memory Pool

	12.14 Flow Table Commands
	12.14.1 CREATE_FLOW_TABLE - Allocate a New Flow Table
	12.14.2 MODIFY_FLOW_TABLE - Modify a Flow Table
	12.14.3 DESTROY_FLOW_TABLE - De-allocate a Flow Table
	12.14.4 SET_FLOW_TABLE_ROOT - Set Flow Table Root
	12.14.5 QUERY_FLOW_TABLE - Query Flow Table
	12.14.6 CREATE_FLOW_GROUP - Define a New Flow Group
	12.14.7 DESTROY_FLOW_GROUP - De-allocate a Flow Group
	12.14.8 QUERY_FLOW_GROUP - Query Flow Group
	12.14.9 SET_FLOW_TABLE_ENTRY - Set Flow Table Entry
	12.14.10 QUERY_FLOW_TABLE_ENTRY - Query Flow Table Entry
	12.14.11 DELETE_FLOW_TABLE_ENTRY - Invalidate Flow Table Entry
	12.14.12 ALLOC_FLOW_COUNTER - Allocate a Flow Counter
	12.14.13 DEALLOC_FLOW_COUNTER - De-Allocate Flow Counter
	12.14.14 QUERY_FLOW_COUNTER – Query Flow Counter

	12.15 L2 TABLE COMMANDS
	12.15.1 SET_L2_TABLE_ENTRY - Set L2 Table Entry
	12.15.2 QUERY_L2_TABLE_ENTRY - Query L2 Table Entry
	12.15.3 DELETE_L2_TABLE_ENTRY - Invalidate Flow Table Entry

	12.16 Vport Commands
	12.16.1 QUERY_VPORT_STATE – Query Vport State
	12.16.2 MODIFY_VPORT_STATE – Modify Vport State
	12.16.3 QUERY_NIC_VPORT_CONTEXT – Query NIC Vport Context
	12.16.4 MODIFY_NIC_VPORT_CONTEXT – Modify NIC Vport Context

	12.17 Vport Counters Commands
	12.17.1 QUERY_VPORT_COUNTER – Query Vport Counter

	12.18 Miscellaneous Commands
	12.18.1 NOP Command

