

Why Compromise?

A discussion on RDMA versus Send/Receive and the difference

between interconnect and application semantics

Mellanox Technologies Inc. 2900 Stender Way, Santa Clara, CA 95054 Tel: 408-970-3400 Fax: 408-970-3403 http://www.mellanox.com

White Paper: Why Compromise

Introduction

During the 1990s, universities like Princeton and Cornell conducted research in
memory mapped communication (SHRIMP and U-Net). The results drove
Compaq (now HP), Intel and Microsoft into drafting a new programming interface
called Virtual Interface Architecture (VIA) in 1997. VIA was the foundation for two
new serial, high-speed, connectivity proposals. The first proposal, named Future
I/O, was driven by Compaq, HP and IBM. The second proposal, named Next
Generation I/O, was driven by Intel, Microsoft, and Sun. In 1999, the two
initiatives determined they had a common goal and agreed to merge into a single
development effort for an optimal interconnect architecture to connect servers
and storage. This architecture development was known as System I/O. In
October 2000, the first specification of this new interconnect architecture was
released, which is now known today as InfiniBand.

One of the driving forces for this new initiative was to find a solution for the most
common issues associated with interconnect architectures – the bottlenecks.
There are three distinct problems that slow down data transfers from or to the
host and involve processing overhead: context transition from application to the
kernel and back, protocol processing, and memory copy.

The first and the second are addressed by off-loading protocol processing from
the CPU for saving its resources and saving context switching from application to
the kernel processing. If the CPU is busy moving data and handling network
protocol processing, it is unable to perform computational work, and the overall
productivity of the system is severely degraded. InfiniBand adapters have the
capability to off-load all the processing of the transport layers.

Memory Chipset CPU

Network Adapter
Receiving Host

Memory Chipset CPU

Network Adapter
Receiving Host

Memory copy

The memory copy overhead includes the resources required to copy data buffers
from the network device to the kernel memory and then from the kernel memory
to the application memory. This approach requires multiple memory accesses
before the data is placed in its final destination. While it is not a major problem for

©2006 Mellanox Technologies Inc. 2

White Paper: Why Compromise

small data transfers, it is a big problem for larger data transfers. This is where
zero-copy capabilities eliminate memory bandwidth bottleneck without involving
the CPU in the network data transfer. Mellanox InfiniBand adapters provides
zero-copy capabilities with both Send/Receive and Remote Direct Memory
Access (RDMA) semantics

In this article, a discussion on RDMA versus Send/Receive and the difference
between interconnect and application semantics will be outlined. Must we choose
one semantic over the other or are both essential to provide the application the
desired performance, flexibility and scalability now and in the future?

RDMA Semantics

RDMA (Remote Direct Memory Access) usually refers to three features: Remote
direct memory access (Remote DMA), asynchronous work queues, and kernel
bypass. Remote DMA is the ability of the network adapter to place data directly
to the application memory. RDMA is also known as a “one-sided” operation in the
sense that the incoming messages are being processed by the adapter without
involving the host CPU. The data comes with information about where it’s
supposed to go, and the receive side does not need to interfere with the data
placement - a.k.a direct placement.

Memory Chipset CPU

Network Adapter

Memory Chipset CPU

Network Adapter
Receiving Host

Sending Host

Memory Chipset CPU

Network Adapter

Memory Chipset CPU

Network Adapter
Receiving Host

Sending Host

Zero-copy flow

Asynchronous work queue is the common interface of RDMA capable adapters
between the adapter and the software, also known as verbs interface. The queue
objects named queue pair (QP), includes a pair of work queues: a send queue
and a receive queue, and completion queues (CQ). The user post an operation

©2006 Mellanox Technologies Inc. 3

White Paper: Why Compromise

on one of the work queues, then the operation executes asynchronously, and
once it is done, the adapter places work completion information in the CQ.
Operating asynchronously like this makes it easier to overlap computation and
communication.

Kernel bypass is typically an RDMA capable adapter ability. It allows user space
processes to do fast-path operations (posting work requests and retrieving work
completions) directly with the hardware without involving the kernel. Saving
system call overhead is a big advantage, especially for high-performance,
latency-sensitive applications.

RDMA capability does not mean it is the only capability

InfiniBand supports both message semantics (a.k.a. Send/Receive) and RDMA.
RDMA operations include RDMA Write (one node writes data directly into a
memory buffer of a remote node), RDMA Read (one node reads data directly
from a memory buffer of a remote node) and RDMA Atomics (combined
operation of reading a memory location, optionally the value, and
changing/updating the value if necessary).

With Send/Receive (also know as two sided-operations) operations, the source
node sends a message and destination node indicates where the data is going to
be placed. While in RDMA operation, the source side has all the necessary
information on the target placement of the data. For Send/Receive operations,
the two sides need to take part in the data transfer.

Both InfiniBand RDMA and Send/Receive semantics can avoid memory copy
(also called zero-copy operations). For TCP/IP networks the case is quite
different, where iWARP is essential for avoiding memory copy.

Data transfer semantics

InfiniBand is capable of placing data directly to the user or kernel space by using
RDMA or Send/Receive operations. In both cases, the destination’s adapter
figures the location of the data in host memory, either according to the data
included in the message for RDMA operations, or according to the appropriate
receive work request set by the destination node. The destination buffer can be
in the user space or the kernel space.

The difference between RDMA and Send/Receive is the way the destination
node finds the host memory destination address for the incoming data. RDMA
messages carry the information and therefore do not need the destination CPU
cycles for the data transfer. Send/Receive messages do not carry this
information and the destination node CPU needs to post receive work requests
for the data placement. Lack of receive WQE at the time an incoming message
arrives is handled by the adapter (with pure hardware mechanisms without any

©2006 Mellanox Technologies Inc. 4

White Paper: Why Compromise

software involvement) and does not cause a fatal error. A notification is sent back
to notify the sender that the receiver is not ready for data transfer. Furthermore,
the hardware resources that are needed for RDMA are the same as for
Send/Receive.

When comparing the raw performance of Send/Receive and RDMA semantics on
a specific interconnect, different architectures will show different results, but this
is related to the adapter implementation. Mellanox InfiniBand implementations
show the same bandwidth numbers, but there is a gap of several hundreds
nanoseconds in favor of RDMA operations. On the other hand, Mellanox is about
to introduce a new HCA architecture where Send/Receive latency will match
those of RDMA. Myrinet-GM can show a difference of up to 10% in favor of
Send/Receive, and the new generation Myrinet-MX does not officially support
RDMA. QLogic InfiniPath does not have the capability of native RDMA and
therefore its RDMA software implementation demonstrate higher latency than
Send/Receive.

RDMA and Send/Receive create the perfect match for connecting servers and
storage. There is no need to compromise and use only one option for every
need, when both are available in the same adapter. The decision on which option
to use at a given time or maybe even both, and it is up to the application to
decide what is more suitable depends on the application. RDMA is typically
associated with large data movement (as it does not require the remote side to
be involved) and Send/Receive with small data transfers. In fact, RDMA is being
used in many other ways, in order to improve and optimized application
performance.

Message Passing Interface (MPI)

One needs to have a distinction between the native adapter RDMA and
Send/Receive semantics and the application RDMA and Send/Receive ones.
You can execute MPI Send/Receive operations with either InfiniBand RDMA or
Send/Receive operations. The device-specific driver uses the lowest latency
options available. Thus, Myrinet will use Send/Receive and Mellanox RDMA.
QLogic has a proprietary interface to the adapter and therefore uses its
proprietary semantics.

MPI protocols can be broadly classified into two types: Eager and Rendezvous.
In the Eager protocol, the sender sends the entire messages to the receiver,
which needs to provide sufficient buffers to handle those incoming messages.
This protocol has minimal startup overhead and is typically used for small
messages. Send/Receive operations are the common implementation. The
destination MPI layer controls the Eager buffers allocation and performing the
MPI tag matching. MPI tag matching can be done by the adapter (but this is not
common), by a kernel process or by a user process (MVAPICH). In this protocol,
the MPI is responsible for the message copy from the eager buffers to the

©2006 Mellanox Technologies Inc. 5

White Paper: Why Compromise

application buffers. The MPI Send/Receive operation can be implemented with
InfiniBand RDMA or Send/Receive, as one can RDMA the data to the eager
buffers (or any buffer). It is a matter of the low-level MPI implementation.

The Rendezvous protocol is typically used for large data transfers. Since the
message is too large to be handled by the eager buffers, the sender and the
receiver negotiate the buffer availability prior to the actual transfer. It is critical to
avoid unnecessary message copies for higher performance. Since the buffer
location is known before the data transfer, RDMA operations are the perfect
match. RDMA Write or Read based approaches can totally eliminate
intermediate copies. RDMA Read can increase the computation and
communication overlap for higher total system efficiency. The usage of RDMA
Read will also save interrupts on the sender side, reducing the sender side CPU
overhead.

Dhabaleswar K. Panda et al, the Ohio State university, presented the benefits of
using RDMA Read operations in a paper “RDMA Read Based Rendezvous
Protocol for MPI over InfiniBand: Design Alternatives and Benefits”, Symposium
on Principles and Practice of Parallel Programming (PPOPP'06), March 29-31,
2006, Manhattan, New York City. In the paper, Dhabaleswar K. Panda has show
how new designs can achieve nearly complete computation and communication
overlap.

In another paper, “High Performance RDMA Based All-to-all Broadcast for
InfiniBand Clusters” presented at the
International Conference on High Performance
Computing (HiPC 2005), December 18-21,
2005, Goa, India, D. K. Panda at el showed the
advantages of using RDMA for collective
operations. Collective operations are being
used in many applications such as matrix
multiplication, lower and upper triangle
factorization, solving differential equations, and
basic linear algebra operations. RDMA offers

©2006 Mellanox Technologies Inc. 6

White Paper: Why Compromise

memory semantics which allow MPI Collective operations to be efficiently
implemented to achieve lower latency (37% improvement as shown in the paper)
and greater scalability.

Douglas Doerfler and Ron Brightwell from Sandia National Laboratories have
created a new MPI benchmark for measuring the application availability as an
indication for the Send/Receive overlap capabilities. The paper named
“Measuring MPI Send and Receive Overhead and Application Availability in High
Performance Network Interfaces” will be published at the EuroPVM/MPI,
September 2006. The results in the paper do not represent the adapter’s
behavior but rather the software and the MPI driver implementation of the MPI
tag matching (which has nothing to do with the adapter) and partitioning between
different threads. The main overhead for MPI is the tag matching and InfiniBand
MPIs, such as MVAPICH, do the matching with a user space process. As a
result, the overhead will increase once the MPI shift from Eager mode to
Rendezvous. Doing the tag matching in a kernel process, like other adapters, will
still require the same resources, but will be hidden from the user space. There
are several approaches that can be used, instead of the current software
implementation, such as a separate thread or kernel module that can deal with
tag matching while the main thread is doing computation, etc.

Memory Registration

From a certain message size, Eager model is too expensive and the zero-copy
approach provides superior performance results. Zero-copy Rendezvous
requires the destination buffers to be registered prior to the data transfer. There
is no debate on the fact that memory registration and deregistration has some
overhead in terms of CPU overhead which is determined by the driver
implementation. Dr. Loïc Prylli from Myricom measured the tradeoff of doing
registration and deregistration for each buffer transfer, versus memory copies.

©2006 Mellanox Technologies Inc. 7

AB AB

White Paper: Why Compromise

Without using optimization for reducing the memory registration and
deregistration overhead, discussed later in the paper, it is clear to see that zero
copy offsets the cost of registration and deregistration as expected from ~32KB
message size for cache hot mode (marked as A point) and ~16KB for cache cold
mode (marked as B point) . Zero-copy is critical for preserving memory
bandwidth and CPU utilization, as you don’t want the CPU to copy those large
messages.

Registration cache is one of the common methods used to dramatically reduce
the registration and deregistration cache. Winsocks Direct (WSD) cost to register
memory per operations versus zero-copy threshold is around 9KB, meaning
above 9KB, memory copy operations become more expensive than zero-copy.
Mellanox and Myricom have ways to optimize the registration cost with specific
adapter support so that the overhead is cheaper than the memory copy for
smaller messages. It’s no surprise that Mellanox named this feature FMR - fast
memory registration.

Furthermore, the new verbs developed for the InfiniBand specification 1.2 (for
example Fast Registration Memory Request) and iWARP include optimizations
for registration and deregistration, and target to reduce the threshold to 1KB of
message.

Send/Receive optimizations

The InfiniBand specification was developed for creating a general I/O technology
allowing a single I/O fabric to replace multiple existing fabrics. Therefore, it was
designed to provide Send/Receive, as well as RDMA capabilities. To enable OS
bypass, InfiniBand defines the concept a Queue Pair (QP) as the interface
between the host and the adapter. Two-sided Send/Receive operations are
initiated by posting a send WQE on a QP’s send queue, which specifies the
sender local buffer. The remote process post a receive WQE on the
corresponding receive queue which specifies a local buffer address to be used
as the destination.

When operating in large clusters, there is a need to reduce the memory footprint,
and to keep it constant regardless of the number of processes. InfiniBand defines
the concept of Shared Receive Queue (SRQ), so that receive resources can be
shared among multiple endpoints. The following results from "InfiniBand
Scalability in Open MPI", Shipman et al, IPDPS, May 2006, demonstrate the
expected results of SRQ implementation in Open MPI and InfiniBand’s great
scalability.

©2006 Mellanox Technologies Inc. 8

White Paper: Why Compromise

Dhabaleswar K. Panda has announced MVAPICH (MVAPICH 0.9.7) support of
SRQ on March 14th, 2006, and has presented the testing results at the IPDPS
2006 conference, as shown below. The conclusion is exactly the same.

MVAPICH 0.9.5
MVAPICH 0.9.7-SRQ

MVAPICH-0.9.7

MVAPICH 0.9.5
MVAPICH 0.9.7-SRQ

MVAPICH-0.9.7

©2006 Mellanox Technologies Inc. 9

White Paper: Why Compromise

Multiple applications support

InfiniBand differs from Myrinet, Quadrics and QLogic InfiniPath, as it is designed
as a general high performance I/O fabric with support for multiple applications in
a single wire. InfiniBand drivers provide interfaces not just for MPI applications
but also for TCP, socket and storage applications. The storage interfaces include
block storage such as SRP, iSER and file systems such as Lustre, GPFS, CFS
and NFS.

NFS, Network File System, allows a system to share directories and files with
others over a network. By using NFS, users and applications can access files on
remote systems almost as if they were local files. A common NFS storage
configuration is a pool of NFS filers that keep files for a large array of “stateless”
application servers. The application servers do not have any dedicated storage
and are not responsible for providing access to any storage, therefore a failure of
an application server does not block access to files. Furthermore, application
processing capacity can be increased simply by adding new servers.

NFS-over-RDMA

The benefits of NFS-over-RDMA are not simply “faster” NFS. Applications that
already use NFS will benefit from the increased data bandwidth, reduced CPU
overhead, direct I/O (zero copy) and lower latency. If NFS-over-RDMA can match
the performance “direct attach” or SAN-connected file systems, than NFS is no
longer a bottleneck, and we can appreciate the file sharing benefits of NFS more
widely, even in applications that previously required “raw” disk access.

Helen Y. Chen, Sandia National Laboratories at. el. compared NFS to NFS-over-
RDMA in her presentation “Early Experiences with NFS-over-RDMA”, The
Commodity Cluster Computing Symposium Baltimore MD, July 25-27, 2006.

©2006 Mellanox Technologies Inc. 10

White Paper: Why Compromise

NFS/RDMA Scalability

0.00

500000.00

1000000.00

1500000.00

A
gg

re
ga

te
 T

hr
ou

gh
pu

t (
KB

/s
)

write
read

write 130257.00 198165.00 270703.60 318829.20

read 692946.80 958892.80 927666.40 1276621.40

1 Client 2 Clients 3 Clients 4 Clients

NFS/RDMA

NFS Scalability

0.00

500000.00

1000000.00

1500000.00

A
gg

re
ga

te
 th

ro
ug

hp
ut

 (K
B/

s)

write
read

write 100017.20 98584.20 87956.00 83743.20

read 179944.00 236774.80 264673.00 272429.40

1 Client 2 Clients 3 Clients 4 Clients

NFS

The client and the server CPU efficiency were compared between the traditional
mode and the RDMA mode. The CPU per MB of transfer is being calculated for
the server and the client with by (Δt)*Σ(%CPU/100/file-size). For the client side,
NFS-over-RDMA shows 61.86% higher efficiency for writes and 75.47% more
efficiency for reads. The server side shows 68.10% higher efficiency for writes
and 84.70% higher efficiency for reads. On the scalability side, NFS/RDMA
incurred ~½ the CPU overhead and for ~½ of the duration, but delivered 4 times
the aggregate throughput comparing to NFS.

No need to compromise

The choice between Send/Receive and RDMA is driven by the applications.
There are cases where Send/Receive is the preferred option and other cases
where RDMA is the natural choice. Zero-copy is one of those cases. Indeed,
there is some overhead for registration and deregistration memory, but the
message size point where is it much more beneficial to use the zero-copy
approach is decreasing to hundreds of bytes, with the new IBTA and IETF
definitions for InfiniBand and iWARP. Furthermore, RDMA was proven to
enhance performance in other cases, such as MPI collective operations,
overlapping, checkpointing, atomic access to shared memory data structures,
storage applications etc.

The Send/Receive and RDMA application interfaces to the adapters, for
InfiniBand and iWARP are open sourced and are constantly optimized under the
auspices of the OpenFabrics Alliance. Helen Chen had provided a descriptive
diagram of the driver for InfiniBand and iWARP in her paper, showing the variety
of the common application program interfaces. Moreover, since the drivers are
open sourced, it is simple to modify the code for other propriety applications or to
enhance the usage of RDMA or Send/Receive.

The OpenFabrics consortium includes all the major InfiniBand and iWARP
companies, includes AMD, Cisco, Dell , IBM, Intel, LSI Logic, Oracle, Sun, the

©2006 Mellanox Technologies Inc. 11

White Paper: Why Compromise

major USA labs and others, showing the wide-ranging adoption for RDMA
technology.

For storage interconnect applications, the situation is different when compared to
the MPI compute applications where RDMA and Send/Receive are used
together. When the application requires large blocks of data to be moved, RDMA
is the only option that provides the required performance, scalability and CPU
overhead. It is common to demand optimal storage I/O and high compute I/O in
for the same application . One example is when file reads and writes happen
before and after the computational periods for the purpose of check pointing and
restart mechanisms, etc. In this example, the ability to read and write large
quantities of data without interrupting the CPUs is essential, especially when
cluster size increases.

RDMA and Send/Receive in the same network provide the user with a variety of
tools that are essential for achieving the best application performance and to be
able to utilize the same network for multiple tasks, such as compute, storage and
management. In the last decade, the industry had made huge progress, both in
the network specification, and in the programming interface. With a wide variety
of APIs and market adoption, RDMA has completed the missing parts that
Send/Receive could not provide, and when combined together, they become the
best, flexible, high-performance solution without compromise.

©2006 Mellanox Technologies Inc. 12

	
	Introduction

