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Abstract—Increased system size and a greater reliance on uti-
lizing system parallelism to achieve computational needs, requires
innovative system architectures to meet the simulation challenges.
As a step towards a new network class of co-processors -
intelligent network devices, which manipulate data traversing the
data-center network, this paper describes the SHArP technology
designed to offload collective operation processing to the network.
This is implemented in Mellanox’s SwitchIB-2 ASIC, using in-
network trees to reduce data from a group of sources, and
to distribute the result. Multiple parallel jobs with several
partially overlapping groups are supported each with several
reduction operations in-flight. Large performance enhancements
are obtained, with an improvement of a factor of 2.1 for an eight
byte MPI Allreduce() operation on 128 hosts, going from 6.01
to 2.83 microseconds. Pipelining is used for an improvement of
a factor of 3.24 in the latency of a 4096 byte MPI Allreduce()
operations, declining from 46.93 to 14.48 microseconds.

I. INTRODUCTION

In recent decades the quest for a steady increase in High Per-
formance Computing (HPC) capabilities has caused significant
changes in the architecture of such systems, to meet the ever
growing simulation needs. Many architectural features have
been invented to support this demand. This has included the
introduction of vector compute capabilities to single processor
systems, such as the CDC Star-100[1] and the Cray-1[2],
followed by the introduction of small-scale parallel vector
computing such as the Cray-XMP[3], custom-processor-based
tightly-coupled MPPs such as the CM-5[4] and the Cray
T3D[5], followed by systems of clustered commercial-off-the-
shelf micro-processors, such as the Dell PowerEdge C8220
Stampede at TACC[6] and the Cray XK7 Titan computer
at ORNL[7]. For a decade or so the latter systems relied
mostly on Central Processing Unit (CPU) frequency up-ticks
to provide the increase in computational power. But, as a
consequence of the end of Dennard scaling[8], the single CPU
frequency has plateaued, with contemporary HPC cluster per-
formance increases depending on rising numbers of compute
engines per silicon device to provide the desired computational

capabilities. Today HPC systems use many-core host elements
that utilize, for example, X86, Power, or ARM processors,
General Purpose Graphical Processing Units (GPGPUs) and
Field Programmable Gate Arrays (FPGAs)[9], to keep scaling
the system performance.

Much of the focus on increasing system capabilities has
been on increasing micro-processor and compute accelerator
capabilities. This may be through increased computational
abilities, e.g. adding vector processing facilities, raw hard-
ware capabilities, e.g. increased clock frequency, of individual
components, the increase in the number of such components,
or some combination thereof. Network capabilities have also
increased dramatically over the same period, with changes
such as increases in bandwidth, decreases in latency, and com-
munication technologies like InfiniBand RDMA that offload
processing from the CPU to the network. However, the CPU
has remained the focal point of system data management.

As the number of compute elements grows, and the need
to expose and utilize higher levels of parallelism grows, it is
essential to reconsider system architectures, and focus on de-
veloping architectures that lend themselves better to providing
extreme-scale simulation capabilities. This includes support
for processing data at the appropriate places in the system and
reducing the amount of data that is moved between memory
locations [10], [11]. Consequently, modern HPC architectures
should investigate alternative specialized system elements that
distribute the data manipulation, as appropriate, rather than
having all data processing handled by a local or remote CPU.

Collaboration between all system devices and software
to produce a well-balanced architecture across the various
compute elements, networking, and data storage infrastructures
is known as the Co-Design architecture. Co-Design exploits
system efficiency and optimizes performance by ensuring
that all components serve as co-processors in the system,
creating synergies between the hardware and the software, and
between the different hardware elements within the system.
The capabilities described in this paper are directed towards
such an architecture. The concept of Co-Design first presentedc©2016 IEEE. Personal use of this material is permitted. Permission from
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by DeMicheli [12] within the environment of chip design and
later expanded to distributed systems and networks [13].

Mellanox focuses on CPU offload technologies performed
by the network as data moves through it, be it on the Host
Channel Adapter or the switch. This frees up CPU cycles for
computation, reduces the amount of data transferred over the
network, allows for efficient pipelining of network and com-
putation, and provides for very low communication latencies.
To accomplish a marked increase in application performance,
there has been an effort to optimize often used communication
patterns, such as collective operations, in addition to the
continuous improvements to basic communication metrics,
such as point-to-point bandwidth, latency, and message rate.

A key requirement for the success of new network fea-
tures is the ability of applications to use the feature without
requiring application-level modifications. In order to achieve
this, it is a requirement to expose new features via Appli-
cation Programmer Interfaces (API) which are ubiquitous in
HPC, such as the Message Passing Interface (MPI)[14]. With
the emergence of the OpenSHMEM[15] specification it is
preferable to support this API too. In this paper we focus on
the optimization of reduction operations. The MPI standard
defines several types of collective operations that result in
data reductions, including blocking and nonblocking variants
of MPI Barrier(), MPI Allreduce(), MPI Reduce(), MPI Re-
duce scatter(), MPI Scan() and MPI Exscan(). The Open-
SHMEM specification currently defines blocking shmem -
barrier all(), shmem barrier(), and the reduction operations
shmem dt op to all(), where dt stand for a data type, and
op for the reduction operations. The supported capabilities
described in this paper are generic, however they are targeted
at supporting these two very important APIs.

This paper describes the Scalable Hierarchical Aggregation
Protocol (SHArP) introduced to greatly decrease the latency of
reduction operations. SHArP defines a protocol for reduction
operations, which is instantiated in Mellanox’s SwitchIB-2
device, providing support for small data reduce and allreduce,
and for barrier. It optimizes these often used global operations
by performing the reduction operations on the data as it
traverses a reduction tree in the network, reducing the volume
of data as it goes up the tree, instead of using a CPU-based
algorithm where the data traverses the network multiple times.
The technology enables the the manipulation of data while it
is being transferred within the data center network, instead
of waiting for the data to reach the CPU to operate on this
data. The wide reduction trees used provide a highly scalable
algorithm, reducing the latency of an eight byte data reduction
on a system of 128 hosts by a factor of 2.1. The effect of this
optimization on overall application performance depends on
the frequency of using such calls, as well as the the skew
in the collective initiation across the group of participating
processes. The greater the skew, the less pronounced the
impact. However, the later is true of for any aggregation
algorithm, whether implemented in hardware or software.

As described in section II, this is not the first time support
for aggregation is provided within the network. However, what

is unique to this design is the emphasis on scale, with support
for large radix reduction trees and simultaneous overlapping
running jobs, each with multiple outstanding aggregation op-
erations.

In subsequent sections we will describe previous work, the
SHArP abstraction, how it is implemented in SwitchIB-2, and
provide some experimental data to demonstrate the effective-
ness of this approach in increasing system performance, and
making available more CPU cycles for computation.

II. PREVIOUS WORK

In the past extensive work has been done on improving per-
formance of blocking and nonblocking barrier and reduction
algorithms.

Algorithmic work performed by Venkata et al. [16] de-
veloped short vector blocking and non blocking reduction
and barrier operations using a recursive K-ing type host-
based approach, and extended work by Thakur [17]. Vadhiar
et al. [18] presented implementations of blocking reduction,
gather and broadcast operations using sequential, chain, binary,
binomial tree and Rabsnseifner algorithms. Hoefler et al. [19]
studied several implementations of nonblocking MPI Allre-
duce() operations, showing performance gains when using
large communicators and large messages.

Some work aimed to optimize collective operations for
specific topologies. Representative examples are ref. [20] and
[21], which optimized collectives for mesh topologies, and for
hypercubes, respectively.

Other work presented hardware support for performance
improvement. Conventionally, most implementations use the
CPU to setup and manage collective operations, with the
network just used as a data conduit. However, Quadrics[22]
implemented support for broadcast and barrier in network
device hardware. Recently IBM’s Blue Gene supercomputer
included network-level hardware support for barrier and re-
duction operations. Its preliminary version Blue Gene/L [23]
which uses torus interconnect [24], provided up to twice
throughput performance gain of all-to-all collective opera-
tions [25], [26]. On a 512 node system the latency of the
16 byte MPI Allreduce() the latency was 4.22 µ-seconds.
Later, a message passing framework DCMF for the next-
generation supercomputer Blue Gene/P was introduced [27].
MPI collectives optimization algorithms for this generation of
Blue Gene were analyzed in [28]. The recent version Blue
Gene/Q [29] provides additional performance improvements
for MPI collectives [30]. On a 96,304 node system, the latency
of a short allreduce is about 6.5 µ-seconds. IBM’s PERCS sys-
tem [31] fully offloads collective reduction operations to hard-
ware. Finally, Mai et al. presented the NetAgg platform [32],
which uses in-network middleboxes for partition/aggregation
operations, to provide efficient network link utilization. Cray’s
Aries network [33] implemented 64 byte reduction support in
the HCA, supporting reduction trees with a radix of up to
32. The eight byte MPI Allreduce() latency for about 12,000
process with 16 processes per host was close to ten u-seconds.



Several API’s have been proposed for offloading collec-
tive operation management to the HCA. This includes the
Mellanox’s CORE-Direct [34], protocol, Portal 4.0 triggered
operations [35], and an extension to Portals 4.0 [36]. All
these support protocols that use end-point management of
the collective operations, whereas in the current approach
the end-points are involved only in collective initiation and
completion, with the switching infrastructure supporting the
collective operation management.

III. AGGREGATION PROTOCOL

A goal of the new network co-processor architecture is to
optimize completion time of frequently used global commu-
nication patterns and to minimize their CPU utilization. The
first set of patterns being targeted are global reductions of
small amounts of data, and include barrier synchronization,
and small data reductions.

SHArP provides an abstraction describing data reduction.
The protocol defines aggregation nodes (ANs) in an ag-
gregation tree, which are basic components of in-network
reduction operation offloading. In this abstraction, data enters
the aggregation tree from its leaves, and makes it’s way up
the tree, with data reductions occurring at each AN, with the
global aggregate ending up at the root of the tree. This result
is distributed in a method that may be independent of the
aggregation pattern.

Much of the communication processing of these operations
is moved to the network, providing host-independent progress,
and minimizing application exposure to the negative effects
of system noise. The implementation manipulates data as it
traverses the network, minimizing data motion. The design
benefits from the high degree of network-level parallelism,
with the high-radix InfiniBand switches to use shallow reduc-
tion trees.

The aggregation protocol is described in the following
subsections. Data enters the aggregation tree at its leaves, with
the aggregation nodes operating on the data as it travels up the
tree to the root. Aggregation groups are used to minimize the
aggregation data path.

A. Aggregation Nodes

The aggregation node is a logical construct, and specifically
a node in an aggregation tree. It accepts data from its children,
reduces the data, and if appropriate, forwards the result to its
parent. If the node is defined as the root, it starts distributing
the result, instead of forwarding it up the tree. The operations
supported by the protocol are those that keep the volume of
the resulting data the same as that coming in from an indi-
vidual child in the tree. This supports barrier-synchronization,
with zero size user data, as well as vector reductions, with
operations such as a summation.

An aggregation can be implemented in different ways. It
can be instantiated, as a process running in a server connected
to the cluster, as a process running in a switch device, or as
part of the switch hardware.

(a) Physical Network Topology

(b) Logical SHArP Tree. Note that in the
SHArP abstraction an Aggregation Node
may be hosted by an end-node.

Fig. 1: SHArP Tree example.

B. Aggregation Trees

The aggregation tree defines the reduction pattern for data
entering from the end-nodes, with the result ending up in the
root of the tree. ANs are connected in a logical tree topology.

Figure 1 shows an example of a SHArP tree allocation over
the physical network topology. Figure 1a shows an example
of physical network fat tree topology, and Figure 1b is the
SHArP tree allocation over this topology. Generally, since the
SHArP tree is logical, it can be created over any topology.
The optimization of tree allocation over given topology is out
of scope of this paper.

SHArP end-nodes (denoted in the figure by blue stars) are
connected to ANs (denoted in the figure by red stars), and,
together with the ANs, define a SHArP tree. As seen in the
figure, ANs are usually implemented in a switch, but also
can be implemented in a host. In addition, the connections
between ANs are logical and, hence, do not have to follow the
physical topology. Moreover, the end-nodes are not necessarily
connected to the physically nearest switch, or AN, in a SHArP
tree. One node of the tree is defined as a root, and that defines
the parent-children hierarchy for the ANs in the tree.

Generally, each AN can participate in several trees, however
each reduction operation can use only a single tree at a time.
Above the SHArP level,l single reduction can be split into
multiple smaller reduction operations, each performed on the
same or different trees.

The protocol does not define the data transport, so that
communication can occur using a range of transports, such
as RDMA-enabled protocols like InfiniBand or RDMA over
Converged Ethernet (RoCE). It also does not handle packet



loss or packet reordering, requiring a reliable transport which
provides reliable, in-order delivery of packets to the upper
layer.

Multiple trees are supported to better distribute the load
over the system, and utilize available aggregation resources.
No assumptions are made about the physical topology of the
underlying network, and trees may overlay any physical net-
work topology, such as a fat-tree, DragonFly+, and hypercube.

C. Aggregation Group

As a mechanism for improving system resource utilization,
the implementation defines the concept of a group, which
includes a subset of the hosts, that are attached to the leaf
nodes of the tree. A group may be defined to include the subset
of hosts spanning a communicator. When the group is formed,
the AN creates a description of its children and its parent (if it
is not the root) thus defining a sub-tree over which reductions
will take. A given tree supports multiple groups, from a single
job as well as from multiple jobs belonging to different users.

As a performance optimization, once a group has been
defined and the corresponding sub-tree setup, this sub-tree may
be trimmed, terminating it at the level is the sub-tree’s where
its width become one the rest of the way to the root of the
tree. This is done to eliminate the need for all data to reach
the root of the tree; rather, it only must reach the highest level
in the tree needed to reduce that data. The detailed algorithm
of distributed group creation is out the scope of the paper.

For example a SHArP group is created when a new MPI
communicator is created. This group contains a subset of MPI
processes that are members of this communicator, one MPI
process per host, or perhaps one MPI process per socket. Each
group member is responsible for on-host or on-socket data
aggregation, before passing this aggregated data to the SHArP
protocol.

To avoid potential deadlock in the collective operation, one
must ensure end-to-end availability of SHArP resources, such
as buffers, in the ANs. If this is not ensured, the simultaneous
and uncoordinated execution of multiple reduction operations
competing for the same AN resources may result in several
reduction operations waiting for the availability of the same
AN resources, allowing none to complete. Resource allocation
methods are not covered in this paper. When the result arrives
at its targets, the implementation ensures that none of the
resources used in the reduction are still in use. This may be
used for flow control purposes.

D. Aggregation Operations

An aggregation operation is performed with participation
of each member of the aggregation group. To initiate such
an operation, each member of the aggregation group sends
an aggregation request message to its leaf aggregation node.
The SHArP request message includes the aggregation request
header followed by the reduction payload. Figures 2 and 3
show the format of the SHArP message.

The aggregation request header contains all needed infor-
mation to perform the aggregation. This includes the data

Fig. 2: SHArP Header schematic.

Fig. 3: SHArP Header including data type, size, and number
of elements, as well as operation code.

description, i.e., the data type, data size, and number of such
elements, and the aggregation operations to be performed, such
as a min or sum operation.

An aggregation node receiving aggregation requests collects
these from all its children and performs the aggregation
operation once all the expected requests arrive. An internal
data structure per collective operation at each AN is used to
track the progress of a collective operation. These are allocated
on the arrival of the first message associated with the collective
operation, and freed once the operation has completed locally.
The result of the aggregation operation is sent by the AN as
a part of a new aggregation request to its parent aggregation
node. The root aggregation node performs the final aggregation
producing the result of the aggregation operation.

Upon completion of the aggregation operation, the root ag-
gregation node forwards the aggregation result to the specified
destinations. The destination may be one of several targets,
including one of the requesting processes, such as in the case
of MPI Reduce(), all the group processes, such as in the
case of an MPI Allreduce() operation, or a separate process
that may not be a member of the reduction group, such as
in the case of big data MapReduce type of operations. An



aggregation tree can be used to distribute the data in the
these cases. The target may also be a user-defined InfiniBand
multicast address. It is important to note that while multicast
data distribution is supported by the underlying transport, it
provides an unreliable delivery mechanism. Any reliability
protocol needed must be provided on top of this mechanism.

E. Fault Handling

Several types of errors may occur and include transport-level
errors, end-node errors, and SHArP protocol errors. The main
goal of the fault handling mechanism is to notify the host-
processes of such errors, under the assumption that some data
is lost, and therefore the aggregation operation can’t complete
successfully. When this happens, the allocated AN resources
are freed, as there is no guarantee that the specific error can
be dealt with, and the end-user processes are notified, so the
application can make a decision how to proceed, whether it
can recover from the error, or whether it must abort.

With all types of errors, a management entity, known as the
Aggregation Manager (AM), is notified of the error, if possible.
The AM will attempt to notify the end-node processes of
the error, and then revoke the SHArP resource allocation
associated with the running job. Both in-band SHArP mon-
itoring capabilities, as well as InfiniBand network monitoring
capabilities are used to detect errors. Since SHArP is also in-
tended to support MPI and SHMEM communication libraries,
which do not bound the duration of an aggregation operation,
timeouts can’t be relied on for error detection. Description of
the software infrastructure supporting the hardware capabilities
is beyond the scope of this paper.

SHArP errors, such as tree connection failure or errors
within the Target Channel Adapter (TCA), are detected by
the SHArP hardware implementation. The AM is notified as
the result of such error detection.

Transport specific errors, such as data transmission errors,
link errors, and switch failure, are handled by the transport
layer and its monitoring infrastructure. If the transport layer
can recover from such errors, and data transmission proceeds,
the AM is not notified of such errors.

Errors in the end-nodes, such as connection failure and
process failure, are detected by the leaf switches, when they
attempt to communicate with the host, and result in AM
notification.

F. SwitchIB-2-Based Aggregation Support

The implementation of support for the switch-based reduc-
tion operations is based on the SHArP protocol described
in Section III. The aggregation node logic is implemented
as an InfiniBand TCA integrated into the switch ASIC. The
transport used for communication between ANs and between
AN and hosts in the aggregation tree is the InfiniBand Reliable
Connection (RC) transport. The results are distributed from the
root to the leaf nodes, or hosts, down the tree, or to a target
InfiniBand Multi-cast group. Details are provided below.

Mellanox’s SwitchIB-2 implements support for SHArP over
the InfiniBand network. The SHArP aggregation node is

Fig. 4: SHArP Node implemented as a virtual TCA within the
SwitchIB-2.

integrated into the switch ASIC, which adds to its ability
to provide the best performance in terms of bandwidth and
latency. As illustrated in Figure 4, an internal logical port
connects an InfiniBand SHArP TCA to the switch. This TCA
provides an InifinBand transport termination point, which
serves as the mechanism for targeting data to be manipulated
by the aggregation logic, and as the source for the result of
such aggregation, as required by the aggregation protocol.
The TCA supports both Reliable Connection (RC) transport
to enable reliable delivery of data through the aggregation
tree as well as Unreliable Datagram (UD) transport to enable
Multicast distribution of the aggregation result. Data is sent
in the direction of the root, when aggregation is taking place,
using the RC transport. The results may be distributed from
the root down the tree using the RC transport, and to a UD
multicast group using the UD transport. A high performance
hardware implementation of the aggregation node functionality
is embedded into the TCA hardware.

The aggregation node implementation includes a high per-
formance Arithmetic Logic Unit (ALU), used to perform the
aggregation operations supported by the aggregation node. It
can operate on 32- and 64-bit signed and unsigned integers
and floating point data. The supported operations include sum,
min and max, MPIs MinLoc and MaxLoc, bitwise OR, AND,
and XOR, which include all the operations, with the exception
of the product, needed to support the MPI standard and the
OpenSHMEM specification.

While floating point summation and multiplication opera-
tions are both commutative, they are not associative. That
is, (a+b)+c not necessarily equal to a+(b+c). While per-
forming a non-commutative reduction operation on floating
point operands, the implementation needs to take care of the
order of execution to enable repeatable operation results. As
an example, 1020 − (1020 + ε) = 0 is not the same as
(1020 − 1020) − ε = −ε. Therefore, the operation can not
be performed in the order the aggregation requests arrive at
the aggregation node, since this order is non-deterministic. Re-
quests are collected in the TCA, with the reduction performed
only after all operands are available, in a predetermined fixed
order. SwitchIB-2 implements a predictable operation ordering
to enable repeatable results regardless of the order of arrival
of the aggregation requests.



An important design goal for the SwitchIB-2 SHArP im-
plementation is that this functionality be useful in large-scale
production environments, with either few large running jobs,
or many smaller jobs. While such jobs may not share compute
nodes, they could still use some of the same switches, and it
is essential to minimize the impact of a running job on the
other ones. To reduce the impact of a collective operation on
other data flows, and avoid switch buffer resources being used
for long periods of time, which waiting for data from a late
arriving process to reach the reduction node, the aggregation
support is implemented in a separate unit, the TCA, within
the ASIC and does not require dedicated virtual lanes. The
implementation support for up to 64 trees per aggregation
node, a large number of groups and hundreds of outstanding
aggregation operations enables many applications running at
the same time to run at the same time using overlapping switch
resources. Multiple reduction groups per job are also supported
each being able to perform several simultaneous reduction
operations efficiently.

Access to the SHArP trees from the host is controlled by
the privileged SHArPd which obtains the list of allocated
resources from the Aggregation Manager (AM). The SHArPd,
in lieu of RDMA CM running on the switch, is involved in
establishing the RC connections between the hosts and the
leaf switches, and enforces the resource allocation provided
by the AM. In addition, InfiniBand Partition Keys (pkey’s)
are used for traffic isolation. For each job, the AM determines
the switch resources allocated to the job, and passes this
information to all relevant AN’s, which track this resource,
and the amount of resources in current use by the application,
not allowing it to exceed the allocation.

IV. MPI IMPLEMENTATION

In the MPI implementation a SHArP group is mapped to
an MPI communicator. New group formation includes new
group formation, group trim operation, and a query for the
resource allocation for the group. The cost of these operations
are logarithmic in the tree radix. Group formation and trim
are accelerated by the Aggregation Nodes.

The implementation uses a non-blocking interface to post
a work request to the RC QP connected to a laef switch,
to locally initiate a collective operation. A MPI Barrier()
is initiated with a SHArP barrier, and MPI Reduce() and
MPI Allreduce() are initiated with an allreduce SHArP work
request. Blocking and non-blocking collective operations are
implemented using the same interfaces. The MPI Reduce() is
implemented in this manner, for ease of tracking credits, with
the result discarded by all but the root of the communicator.
Collective operation completion is detected by a completion
event received after the result is delivered to the QP. The
current implementation uses the aggregation tree to distribute
the results to all members of the communicator.

The MPI implementation keeps track of the number of
outstanding collective operations posted to the network, as
well as the amount of buffer space in use. New collective op-

erations are initiated, only if resources are available, otherwise
operation initialization is delayed.

V. EXPERIMENTS

To study of the switch-based SHArP collective acceleration
hardware, the performance of the collective operations was
measured as a function of message size and number of hosts,
and compared with data obtained using optimized host-based
methods.

A. System Configuration

The test system included 128 node dual socket hosts, with
each processor being a 2.6 GHz Intel E5-2697 v3 Haswell
processor. Mellanox’s SwitchIB-2 switches, with support for
the SHArP protocol, and ConnectX-4 Host Channel Adapters
were used.

Mellanox OFED version 3.2-1.0.1.1 of the InfiniBand verbs
was is use, with Red-Hat Linux version 7.2 operating sys-
tem. A pre-release version of Mellanox’s subnet manager
with SHArP support was used. Pre-release versions of the
Aggregation Manager, which manages the aggregation control-
path, and SHArP Daemon, which handles host-local control-
path management were also used. A pre-release version of
SwitchIB-2 firmware was used, with SHArP control-path
support.

Since the latencies of the barrier and small-sized data
reduction operations are becoming rather small, effects of
system noise have a measurable effect on the performance
of these collective operations. As such, several default sys-
tem settings were modified to reduce the effect of the sys-
tem activity, and the Central Processing Unit (CPU) en-
tering one of the C-states. The kernel/OS settings include
the command lline options intel pstate=disable, isolcpus=1,
nohz full=1 and rcu nocbs=1. They also include sysctl vm -
stat interval=1200, sysctl kernel.numa balancing=0, sysctl
kernel.nmi watchdog=0 and disable THP: echo never ¿
/sys/kernel/mm/transparent hugepage/enabled. The BIOS set-
ting changes include disabling the SMI interrupts including
‘’Processor Power and Utilization Monitoring” and ‘’Memory
Pre-Failure Notification”. In addition disable C-states, set
static max performance, disable turbo-boost and disable hyper-
threading.

B. Communication Libraries

A pre-release version of HPC-X[37] is used. The MPI
collective FCA[38] library version 3.4 is used, with initial
SHArP support. Some comparison runs were performed using
MVAPICH-2[39] version 2.2a.

C. Performance Tests

A low-level verbs test, and the OSU collective latency test
version 5.2 [40] for MPI Barrier() and MPI Allreduce() were
used. All tests were run with a single process per host.

The basic verbs-level tests consisted of a tight loop around
individual collective operations, such as a SHArP-level barrier.
This consists of two steps: 1) posting the SHArP barrier



message to the HCA, and 2) polling the SHArP completion
queue for completion of the reduction operation. In a pipelined
algorithm, a single MPI-level message was fragmented into
multiple SHArP messages which were simultaneously in flight.

In addition, the impact of using the SHArP based aggrega-
tion support on the OpenFOAM [41] application is studied.

VI. MICRO-BENCHMARK RESULTS

A. Native SHArP Measurements

Table I present the results of SHArP-based latency mea-
surements for barrier and allreduce operations. In all of these
measurements the hosts are equally distributed across eight
leaf switches configured in a two-level fat tree topology with
100Gbps links.

TABLE I: Native SHArP Allreduce() average latency (µ-
seconds). Optimized system with turbo-mode off.

Number of Hosts
Message 32 64 128
Size [B]
0 2.59 2.57 2.63
8 2.66 2.68 2.79
16 2.72 2.70 2.86
32 2.72 2.85 2.92
64 2.89 2.92 3.04
128 3.06 3.10 3.25
256 3.89 3.99 4.21

Table II compares the performance of the SHArP-based
barrier and allreduce collectives on a system tuned for reduced
system activity (Opt), as described in section V, and a system
configured with default settings (Unopt). When 64 hosts are
used, the impact on performance is relatively small, on the
order of 5%. However, at 128 nodes the impact isin the range
of 10 to 20%.

TABLE II: Native Allreduce() and Barrier() average latency
(µ-seconds). One process per host. Comparison of optimized
system to out-of-the-box system settings.

Message 64 Hosts 128 Hosts
Size [B]

Opt Unopt % Diff Opt Unopt % Diff
0 (Barrier) 2.57 2.70 5.0 2.63 3.17 20.5
8 2.68 2.85 6.3 2.79 3.43 22.9
16 2.70 2.79 3.3 2.86 3.15 10.1
32 2.85 2.90 1.7 2.92 3.36 15.1
64 2.92 3.06 4.8 3.04 3.45 13.5
128 3.10 3.24 4.5 3.25 3.68 13.2
256 3.99 4.02 0.8 4.21 4.82 14.5

B. MPI-Level SHArP Measurements

Table III reports the latencies of MPI Allreduce() and
MPI Barrier() compared with native SHArP data. The MPI
integration increases latency by two to four tenths of a µ-
second.

Table IV compares the performance of MPI Barrier() and
MPI Allreduce() from several different implementations at

TABLE III: A comparison of MPI Allreduce() and Native
Allreduce() average latencies (µ-seconds) on optimized sys-
tem. The latency difference (Diff) is in units of µ-seconds.

Number of Hosts
Size 32 64 128
[B] MPI Native MPI Native MPI Native
0 2.83 2.59 (0.24) 2.83 2.57 (0.26) 2.88 2.63 (0.25)
8 2.95 2.66 (0.29) 3.10 2.68 (0.42) 3.15 2.79 (0.36)
16 2.89 2.72 (0.17) 3.04 2.70 (0.34) 3.03 2.86 (0.17)
32 3.01 2.72 (0.29) 3.17 2.85 (0.32) 3.24 2.92 (0.32)
64 3.06 2.89 (0.17) 3.24 2.92 (0.32) 3.24 3.04 (0.20)
128 3.24 3.06 (0.18) 3.44 3.10 (0.34) 3.57 3.25 (0.32)

128 host count. The SHArP-based approach consistently out-
performs a host-based algorithm, which uses InfiniBand mul-
ticast capabilities. At this scale the latency of the host-based
methods are at least 50% than the SHArP-based methods.
The difference from the MVAPICH-2 implementation is even
larger, showing that the host-based HPC-X algorithms are
efficient, and provide a fair comparison for the SHArP based
algorithms.

TABLE IV: MPI Allreduce() and MPI Barrier() average la-
tency (µ-seconds) for several implementations on 128 hosts, 1
process per host. The latency difference (Diff) is in % relative
to SHArP based measurements.

Message HPC-X SHArP HPC-X Host MVAPICH-2
Size [B] Based Based Host Based
0(barrier) 2.91 5.25 (80.4%) 11.47 (290%)
8 2.83 6.01 (112%) 11.90 (320%)
16 2.79 5.95 (56.9%) 11.27 (304%)
32 3.94 6.19 (57.1%) 11.69 (197%)
64 3.02 6.80 (125%) 12.03 (298%)
128 4.30 7.69 (78.8%) 14.08 (227%)

Table V shows MPI Allreduce() latencies for message sizes
that exceed the SHArP hardware maximum message size. This
is achieved by posting multiple SHArP reduction operations,
pipelining the reduction of message fragments. This improved
performance, with a peak speedup of almost a factor of four
at 2048 bytes.

TABLE V: MPI Allreduce() average latency (µ-seconds) on
128 hosts, one process per host. Comparison of pipelined
SHArP-based algorithm with host-based algorithm.

Message SHArP Host SHArP
Size [B] based Based improvement

factor
8 2.76 5.82 2.11
16 2.76 5.91 2.14
32 2.86 6.04 2.11
64 3.01 6.76 2.25
128 3.24 7.37 2.27
256 3.50 8.99 2.57
512 4.06 11.11 2.74
1024 5.49 18.04 3.29
2048 8.44 33.61 3.98
4096 14.48 46.93 3.24



TABLE VI: MPI Allreduce() average latency (µ-seconds) on
128 hosts, one process per host. Comparison of result deitri-
butiong using RC down the reduction tree, UD multicast, and
both with a host-based algorithm. Size is given in bytes.

size RC Only RC & UD (default) UD Only Host based
4 2.7 2.5 2.46 5.68
8 2.7 2.51 2.45 5.78
16 2.71 2.56 2.52 5.89
32 2.82 2.56 2.51 6.00
64 2.96 2.67 2.61 6.78
128 3.14 2.96 2.92 7.3
256 3.44 3.75 3.71 8.59
512 4.1 4.29 4.19 10.69
1024 5.51 5.5 5.43 18.67
2048 8.45 7.94 7.47 33.7
4096 14.62 13.31 11.54 46.89

VII. OPENFOAM PERFORMANCE

Understanding the impact of the SHArP technology on
application performance is important. To have an impact such
applications must use either barrier orsmall reduction opera-
tions. Also, application load imbalance must be smaller than
the duration of the collective operation to exhibit significant
impact on application performance.

We have chosen to use the OpenFOAM [41] application for
these measurements. The benchmark run was the Lid Driven
Cavity Flow, using the icoFoam solver, with 1 million cells.

The tests were run using HPC-X and base Open MPI.
HPC-X’s collective MPI Allreduce() algorithms are shared-
memory aware. The collective operation used most frequently
by OpenFOAM is an eight byte MPI Allreduce() used by the
conjugate gradient solver.

The host-based MPI Allreduce() used by HPC-X is a highly
optimized derivative of the recursive k’ing algorithm that
leverages the InfiniBand hardware multicast capabilities. It
also support a SHArP based version of MPI Allreduce(). The
default Open MPI implementation uses a more traditional
recursive-doubling MPI Allreduce().

Table VII present the total run time for this test case,
as a funciton of MPI implementation and of the number of
processes. As the results show, using the SHArP capabilities
improves overall application performance. When comparing
to the implementation using the highly optimized host-based
algorithm, overall application performance improves anywhere
from half a percent to fifteen percent. Discarding the last two
data points, since overall run time is increased, five percent
improvement is the upper limit on performance improvement
for this particular test case.

Comparing the performance of the test case using the
SHArP capabilities to the more traditional MPI Allreduce()
implementation, we see a far larger performance improvement.
Overall application performance is improved in the range of
four to 50%, or four to 30%, when considering only the
runs for which an increased number of processes being used
reduces overall application run-time.

TABLE VII: OpenFOAM performance as a function of the
MPI library implementation. The numbers in brackets indicate
the % improvement in run-time when using SHArP capabili-
ties.

Number of HPC-X with Default HPC-X with
Processes HCOLL no Open MPI HCOLL with

SHArP SHArP
28 1892 1892(0%) 1892 (0%)
56 832 866 (4.09%) 824 (1.05%)
112 426 469 (9.96%) 424 (0.59%)
224 249 285 (14.3%) 248 (0.39%)
448 159 194 (22.4%) 155 (2.50%)
896 127 167 (31.4%) 121 (4.75%)
1792 118 180 (52.6%) 116 (1.65%)
2688 136 206(51.3%) 127 (7.18%)
3584 174 151 (15.2%)

VIII. DISCUSSION

Small and medium data reduction operations are frequently
used by many scientific applications. The need for rapid
synchronization of many processes is also great, especially
when using programming models that rely on explicit synchro-
nization to maintain application consistency, such as OpenSH-
MEM. This is contrary MPI send-receive-like semantics where
the synchronization is implicit, as part of the protocol. The
SHArP capabilities are designed to provide very low network-
level latency reduction and synchronization capabilities, thus
addressing these needs. In addition, this capability is designed
to minimize the software path for such operations.

To achieve scalable low-latency performance, the implemen-
tation takes advantage of the large switch radix, 36 ports in the
case of SwitchIB-2, by mapping the SHArP reduction tree onto
the underlying physical topology in such a way that minimizes
the network costs between aggregation nodes. In particular,
there is a preference to map connected aggregation nodes
to directly connected switches, where possible, to minimize
switch latency costs, as well as link utilization. This results in
shallow, high-radix reduction trees, and while the experiments
run for this paper were for a system with a topology of a
two-level fat-tree, this approach is expected to be efficient for
other topologies. The high-radix trees provide a high degree
of reduction parallelism, while rapidly reducing the volume
of data on the network. Thus, data traverses a small number
of switches, often one switch per tree level. In the case of a
fat-tree topology based on a 36-port SwitchIB-2 supporting a
full bisection-bandwidth, the data volume is reduced by up to
a factor of 18 at each level in the tree.

The particular configuration chosen for this paper’s exper-
iments uses eight leaf switches, with the 32, 64, and 128
host configurations differing only in the number of children
each AN has at the first-level in the tree. As barrier data in
table I shows, the native performance is almost constant as
a function of the number of children when the only changes
in the tree are the number of children the AN has. There is
a weak dependence on the size of the reduction of 0.10 and
0.22 micro-seconds when the number of children at the first-
level AN is increased from four to eight, and then from eight



to sixteen, respectively. This is due to the larger number of
individual data reductions that are performed, as well as the
added volume of data the ASIC must handle.

MPI-level comparisons are also provided, as this is the
communication API used by the vast majority of parallel
HPC applications. Table III compares the latencies for the
MPI level reduction capabilities to the native capabilities. This
table shows that the current MPI-level support generally adds
overhead in the range of 200-400 nano-seconds. This overhead
is expected to be independent of the size of the reduction
group, with a dependence on message size when an inline
send is used to initiate the reduction operation.

This paper relies to a certain degree on performance compar-
isons to host-based MPI-level reduction operations to highlight
the performance advantages of the SHArP-based approach. It
is important to demonstrate that the measuring stick indeed
does provide a good comparison for such purposes. Table
IV compares the MPI-level performance of MPI Barrier()
and MPI Allreduce() of SHArP-based implementations, to
an industry leading and highly optimized host-based meth-
ods supported by HPC-X, and to MVAPICH-2, a widely
used InfiniBand-supporting MPI implementation. Both are
considered high-performance implementations for InfiniBand-
based systems. As table IV shows, HPC-X’s SHArP-based
implementation is at least fifty percent better than it’s host-
based approach. At 128 nodes, the implementation is at a
factor of three to four times better than the ones supported
by the MVAPICH-2 implementation. The SHArP-based ap-
proach does indeed provide exceptional performance, with the
difference in latencies expected to grow as the system size
grows.

Comparing SHArP estimated eight byte MPI Allreduce()
performance to that reported for the highly integrated BG/L
and BG/P machines, SHArP latencies are a bit smaller than
the BG/L latencies. The SHArP latency is comparable to that
of the BG/P platform. However, the SHArP implementation
supports an environment where jobs may share host and
network resources, and does not require taking up virtual lanes
to provide switch buffer resources for SHArP reductions. The
BG/P per router latencies are quite a bit lower than those
of the SwitchIB-2, but the latter supports a much wider tree
node radix, with the latency of these small data reductions
being weakly dependent on the number of input operands. This
supports shallow reduction trees, thus providing low overall
reduction latencies.

Even though the switch can perform reductions on payloads
of up to 256 bytes, independent of the size of the individual
elements, the ability of the device to handle multiple out-
standing collective operations is used to pipeline reductions.
This capability is used to support the reduction of larger data
blocks, using software level message fragmentation and re-
assembly. As table V shows, this greatly increases the range
of SHArP’s utility. In this particular set of measurements,
the benefit over the host-based approach continues to grow
in relative proportions up to a size of 2048 bytes, where the
latency of the SHArP-based approach is about a factor of four

above an equivalent optimized host-based algorithm. Large
improvements are shown over the full range of measurements,
up to 4096 bytes.

Finally, as has been shown by the OpenFOAM test case,
application run time is reduced by using the SHArP capabili-
ties, with its impact being more pronounced with increased
use of SHArP optimized collective operations. The more
load balanced the applications are, the greater the impact
on overall application performance. This is generally true
for collective operations that aggregate data, with the SHArP
based algorithms being such operations.

IX. CONCLUSIONS

This paper presents the SHArP architecture and its im-
plementation in the SwitchIB-2 ASIC. The capability shows
very good performance characteristics for small-sized data re-
ductions, with industry leading performance. By mapping the
aggregation trees well onto the underlying physical trees and
taking advantage of the high degree of parallelism available
at the network level, this approach is expected to scale well
to very large systems. In addition, one can take advantage
of the large amount of outstanding operations supported by
the switches, by pipelining SHArP reduction operations to
extend the range of reduction sizes that can benefit from these
capabilities.

The current approach has more potential for improved
performance over end-point (HCA) based approaches, because
of the greater degree of aggregation concurrency available
from the high-radix Mellanox InfiniBand switches. In addition,
the data paths tend to be shorter, with the data not required
to travel to the network edge to be reduced. For topologies
where all switches are edge switches, such as hypercubes, the
virtual nature of the AN implies that switch traversal does not
imply paying the additional cost of a reduction at each switch
traversal, thus enabling the use of shallow aggregation trees
even for such network topologies.
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