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Abstract 
Sockets Direct Protocol (SDP) is a byte-stream 

transport protocol implementing the TCP 
SOCK_STREAM semantics utilizing transport 
offloading capabilities of the InfiniBand fabric. Under 
the hood, SDP supports Zero-Copy (ZCopy) operation 
mode, using the InfiniBand RDMA capability to 
transfer data directly between application buffers. 
Alternatively, in Buffer Copy (BCopy) mode, data is 
copied to and from transport buffers. 

In the initial open-source SDP implementation, 
ZCopy mode was restricted to Asynchronous I/O 
operations. We added a prototype ZCopy support for 
send()/recv() synchronous socket calls. 

This paper presents the major architectural aspects 
of the SDP protocol, the ZCopy implementation, and a 
preliminary performance evaluation. We show 
substantial benefits of ZCopy when multiple 
connections are running in parallel on the same host. 
For example, when 8 connections are simultaneously 
active, enabling ZCopy yields a bandwidth growth 
from 500MB/s to 700MB/s, while CPU utilization 
decreases 8 times.     
 

1. Introduction 

The InfiniBand architecture [1] introduces a high 
bandwidth, low latency interconnect with RDMA 
capabilities, running at up to 120 gigabit per second 
link speeds. Current implementations support up to 20 
gigabit per second wire speed on Host Channel 
Adapters (HCAs), and 60 gigabit per second on 
switches. Upper layer protocols have been developed 
providing standard interfaces to existing frameworks 
and applications on top of HCA devices. The most 
commonly used protocols are Message Passing 
Interface (MPI), IP over InfiniBand (IPoIB), Sockets 
Direct Protocol (SDP), SCSI RDMA Protocol (SRP), 
and Direct Access Provider Library (DAPL). 

In this paper we discuss modifications to the 
InfiniBand open-source implementation of SDP ([4], 
[5]). We have extended the SDP implementation, and 

added zero copy (ZCopy) support on the synchronous 
I/O path. The implementation has been developed up 
to the prototype level, and enables us to benchmark the 
implementation performance. 

1.1. Introduction to InfiniBand 

The InfiniBand architecture defines a System Area 
Network that connects processor nodes and I/O 
devices. This network may comprise multiple subnets 
connected by routers. Each subnet may contain one or 
more InfiniBand Switches. Processor nodes and I/O 
devices connect to the InfiniBand fabric through Host 
Channel Adapters (HCA) and Target Channel 
Adapters (TCA) respectively, as illustrated in .  Figure 1

 

Switch 

Subnet A Subnet B 

Router 
TCA 

Server 

HCA 

Server 

HCA 

Server 

HCA 

Switch 

Figure 1: InfiniBand fabric basic components 
The HCA device plugs into the host I/O subsystem. 

The HCA contains sophisticated DMA engine, 
transport engine, and management capabilities. The 
key contributions of the HCA to the system 
performance are: 
• Transport offload – the HCA can perform all 

transport tasks, thus making it possible for the 
application to send and receive data reliably with 
minimal software overhead. This includes 
segmentation and reassembly, retransmission, 
transport checks, timers, etc.  

• Zero Copy – the HCA is capable of exposing user 
or kernel memory buffers to the InfiniBand fabric. 
A remote HCA can then read or write data from 
and into these buffers by performing Remote 
DMA (RDMA) operations. RDMA operations 
make it possible to convey application buffers 
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over the fabric, without involving the host CPU, 
while avoiding copying buffers into intermediate 
communication pre-allocated buffers. 

• Kernel Bypass – through special protection 
enforcement mechanisms, the InfiniBand allows 
user applications to directly interact with the HCA 
hardware in order to send and receive messages. 
Kernel Bypass reduces the communication 
overhead for user-space applications. 

In order to allow RDMA operations, the consumer 
must perform memory registration. Memory 
registration involves: 
• Pin-Down – registered memory must be locked in 

physical memory and accessible by the HCA. 
• Registration with the HCA – configuration of the 

HCA hardware to grant certain permissions to 
application buffers. This includes access right 
setting, association with a set of connections, and 
setup of HCA translation tables. 

The InfiniBand specification defines an HCA 
interface called Verbs [1]. The Verbs provide 
operations for resource management and data transfer 
operations. The communication is based on Queue 
Pairs (QPs). InfiniBand supports Send/Receive, 
RDMA Read, and RDMA Write operations. These 
operations are initiated by posting Work Requests on 
the Send or Receive Queue (SQ/RQ). Data transfer 
operations are asynchronous. The HCA reports 
completion of Work Requests asynchronously by 
posting Completion Queue Elements (CQEs) to 
Completion Queues. 

Figure 2: Data operation interface 
The completion semantics depend on the transport 

service of the QP. For a reliable queue, a CQE is 
generated after data arrival to the remote destination is 
acknowledged. For an unreliable queue, a CQE is 
generated once data has been transmitted to the fabric. 
Completion of a receive request is generated when data 
arrives to the local receive queue. 

Receive operations require that the consumer pre-
posts receive buffers. Incoming RDMA operations do 
not require pre-posted buffers on the receive side and 
are handled at the transport level without involving the 

host CPU. The consumer can observe Work Request 
completions by polling the Completion Queue, or by 
requesting completion notifications that are delivered 
by means of hardware interrupts. Figure 2 illustrates 
the InfiniBand asynchronous interface for data 
operations exported through the Verbs. 

1.2. Sockets Direct Protocol 

Traditional implementations of TCP sockets 
typically require data copy between application buffers 
and NIC kernel buffers, segmentation, reassembly and 
other transport handling. These three operations 
consume CPU and memory resources, and become a 
performance bottleneck for high speed interconnects. 

Data copying overhead has been identified in the 
1990s as a significant CPU consumer in TCP stacks 
[2]. Protocol offload implementations addressed this 
overhead by implementing zero copy [3].    

The Sockets Direct Protocol (SDP) (added as an 
annex to the InfiniBand architecture specification [1] 
on April 2002) eliminates the protocol stack 
bottlenecks for InfiniBand-based networks. SDP is a 
byte stream protocol that mimics TCP 
SOCK_STREAM semantics. Existing socket-based 
applications can use the SDP protocol for 
communication over the InfiniBand fabric, without any 
code modification or recompilation. Traditional 
TCP/IP is used outside the InfiniBand fabric. 

As illustrated in Figure 5, an implementation of 
SDP resides between the software socket interface and 
the InfiniBand Verbs interface. Right under the socket 
interface, there is a Socket Switch that chooses 
between an SDP and a regular TCP socket for each 
particular connection, according to a configurable 
policy. 

SDP is implemented on top of the InfiniBand 
Reliable Connection (RC) transport service, and 
leverages the reliability and transport checks 
implemented by the HCA hardware. SDP maps the 
socket send()/recv() calls to InfiniBand operations. 
Data messages are transferred by SEND and RDMA 
operations. Control messages are transferred by SEND 
messages. SDP supports two data transfer types: 
Buffer Copy (BCopy) and Zero Copy (ZCopy).  

BCopy uses dedicated, pre-registered private SDP 
buffers. Data is copied from application buffers into 
SDP buffers; data transfer is then performed using the 
SEND operation. On the receive side, the data lands in 
pre-registered SDP buffers and is then copied into 
application buffers. Figure 3 illustrates the BCopy 
flow. In this example, the receiver (data sink) had been 
waiting for data before the data arrived. In case where 
the receiver is slow, the data will wait in the SDP 
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buffers until the receiver calls recv(). A flow control 
mechanism makes it possible for the receiver to limit 
the number of outstanding SDP buffers. On the sender 
(data source) side, the send() call returns as soon as the 
data is copied into the local SDP buffer. 

 
Figure 3: BCopy flow  

ZCopy avoids the data copy overhead by direct 
data transfer between application buffers through 
RDMA operations.  

Application buffers are typically not registered. 
Therefore, in order to enable RDMA operations, the 
buffers must be pinned and registered by the SDP 
stack implementation.  

SDP supports two modes of ZCopy operation: 
Read ZCopy and Write ZCopy.  

A Read ZCopy flow is illustrated in Figure 4. In 
this example, the data source gets an application buffer 
to send. If the buffer is large enough, the data source 
registers and advertises it by sending a SrcAvail 
message to the data sink. Later, a buffer is posted on 
the data sink. The buffer is registered and an RDMA 
Read is performed, copying the data source buffers 
into data sink application buffers. Once the RDMA 
Read is completed, the data sink indicates this by 
sending an RdmaRdCompl message to the data source. 
Note that it is also possible to perform an RDMA Read 
into local SDP buffers. 

Write ZCopy uses an RDMA Write for data 
transfer. The data sink advertises a buffer by sending a 
SinkAvail message. The data source will then RDMA 
Write the buffer. Once the RDMA Write is completed, 
the data source indicates this by sending an 
RdmaWrCompl message. Read ZCopy is typically 
useful when the receiver is slower than the sender, 
while Write ZCopy is typically useful when the sender 
is slower than the receiver. 
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Figure 4: Read ZCopy flow  
Both BCopy and ZCopy modes incur some 

communication overhead. While with BCopy we incur 
the overhead of a local data copy, in ZCopy mode we 
incur the overhead of locking the application buffers in 
physical memory, their registration with the HCA, and 
additional communication overhead. Thus, the SDP 
implementation uses a ZCopy threshold parameter to 
determine whether to take the ZCopy path or the 
BCopy path. We will discuss strategies for ZCopy 
threshold selection later on in this paper. 

Each SDP half-connection has three possible data 
delivery modes: 
• Buffered – only BCopy operations are allowed 
• Combined – BCopy and Read ZCopy are allowed. 

It is not allowed to advertise more than one 
ZCopy buffer. 

• Pipelined – Both BCopy and ZCopy are allowed. 
Pipelining of more than one advertisement is 
allowed. 

The transition between these modes is up to the 
implementation. The protocol specification defines, for 
each mode, which side can initiate a mode transition. 

1.3. InfiniBand Gold Collection 

The InfiniBand Gold Collection [5] is an open-
source Verbs and ULP stack implementation. It is 
based on the initial Linux open source code that was 
posted on the OpenIB Alliance web site [4], and has 
been further enhanced and stabilized by Mellanox. 

The InfiniBand Gold Collection is implemented for 
the Linux operating system and supports numerous 
Linux kernels including several 2.4 and 2.6 kernels. As 
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of version 1.7.0, it includes an SDP implementation 
with BCopy support. Originally, it did not utilize 
ZCopy for synchronous send()/recv() operations:  
ZCopy was utilized exclusively for asynchronous I/O 
(AIO), and supported only certain kernel versions. 
(See Section 2 below for a description of Zcopy design 
and implementation for synchronous send()/recv() 
operations.) 

SDP is implemented as a kernel module with a 
socket switch in a user-mode library (libsdp), as 
illustrated in Figure 5. The socket switch makes it 
possible to listen simultaneously on both SDP and TCP 
sockets. The socket switch policy specifies whether an 
SDP or TCP socket shall be preferred based on the 
application name, IP address or port number. 

 
Figure 5: Gold CD SDP stack components 

The SDP protocol is registered with the kernel as a 
new AF_INET_SDP protocol family. The socket 
switch is implemented as a user-mode shared library. 
When loaded, it overrides the application socket calls. 
When a socket is created, the socket switch determines 
whether a TCP or an SDP socket is required, and 
creates an AF_INET or an AF_INET_SDP socket 
object. An AF_INET_SDP object is implemented by 
the SDP stack kernel module. This module implements 
all socket entry points (net_proto_family and 
proto_ops) that are invoked by the kernel: create, 
release, bind, connect, accept, sendmsg, etc.  

Since the entire SDP implementation is in the 
kernel, it does not leverage the kernel bypass 
capability of the InfiniBand architecture. Nevertheless, 
transport offload is fully utilized, which was shown to 
be beneficial to both bandwidth and CPU utilization 
[6]. In the following section, we discuss the design for 
making use of the RDMA hardware capability. 

2.  Zero Copy implementation 

2.1. Design objectives 

Our major design goal was to enable true zero copy 
support for synchronous socket operations in SDP.  

The zero copy capability for synchronous 
operations was not included in the original open source 
stack [4]. Thus, the stack effectively behaved as if the 
ZCopy threshold was set to infinity. The ZCopy 
scheme was only supported for the asynchronous I/O 
(AIO) calls. This capability cannot be directly 
extended to support synchronous operations, for the 
following reasons: 
• ZCopy was supported only for kernel version 

2.4.21-15 Red Hat Advanced Server 3.0 update 2. 
On this kernel, the AIO subsystem takes care of 
pinning the buffers. To be more accurate, it maps 
the user-land buffers into the kernel address space. 
On the contrary, synchronous socket calls do not 
perform this mapping of buffers to kernel. 
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• The AIO subsystem is asynchronous in its nature, 
therefore it maps nicely to the InfiniBand model. 
Whereas synchronous calls require some blocking 
code to be implemented and some heuristics to be 
considered as to which operation path to take. 

• The AIO code supports multiple simultaneous 
operations, while synchronous operations allow 
only one outstanding transaction at a certain time. 

Note that if the message is being sent or received 
with a MSG_DONTWAIT flag, or if the socket has 
been configured with the O_NONBLOCK option, then 
the socket implementation cannot block in order to 
exchange key information and RDMA the data. Thus, 
ZCopy is used only for blocking synchronous socket 
calls. The non-blocking synchronous calls default to 
BCopy mode in order to preserve their semantics. 

Design and implementation are discussed in further 
detail in the following subsections.  

2.2. Pipelining and data transfer modes 

The fundamental difference between ZCopy and 
BCopy modes (when using the synchronous socket 
calls) is the ability to pipeline transactions on the wire.  

In BCopy mode, user data is copied into kernel 
SDP buffers and is then sent over the wire. On the data 
source side, when processing the send() call, SDP will 
copy the user data into an SDP buffer, will post a work 
request to the HCA and return from the send() call. 
This way, the user may submit multiple send() 
operations to the SDP layer, while some of the 
previous send() operations are in flight (see Figure 3: 
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BCopy ). This pipelining capability makes it possible 
to sustain high bandwidth over a single connection. 
Nevertheless, the CPU will be busy copying data. 

In our implementation pipelining is not possible 
when using ZCopy on synchronous socket calls. Read 
ZCopy flow is illustrated in Figure 4. The user buffer 
on the send side must be kept unmodified, pinned and 
registered until the RDMA completes. To prevent the 
user from modifying (or even de-allocating) the data 
buffer, the send() operation must block until the 
transaction completes. Only after data has been fully 
transferred through an RDMA operation, including the 
handshake (RdmaRdCompl or RdmaWrCompl 
message), the send() call may return and the 
application may send the next message. Thus, 
regardless of the ZCopy flavor chosen, pipelining is 
not possible in our implementation for blocking 
synchronous socket calls. Therefore, the bandwidth 
over a single connection using ZCopy may not be as 
high as it is when using BCopy. Additionally, we 
expect the overhead imposed by RdmaRdCompl or 
RdmaWrCompl control messages to manifest itself at 
relatively small message sizes. Figure 4 shows for a 
specific transaction the effective time (where data 
flows through the wire) along with the non-effective 
time (protocol handshake). The larger the message 
size, the smaller the overhead part of the transaction, 
and therefore the better the bandwidth that can be 
obtained. 

For the blocking socket operations we chose to 
implement only the Read ZCopy flow, which is used in 
Buffered and Combined data delivery modes. The 
implementation of Write ZCopy flow, used only in 
Pipelined mode, is suggested for future work. 

While extending the scope to multiple socket 
connections running concurrently, the overhead of one 
connection overlaps with those of other connections as 
well as with data transfer on the wire. Thus, when 
running multiple connections concurrently, SDP 
delivers high performance using ZCopy for relatively 
low message sizes. We believe that the model of 
multiple sockets being active at the same time is 
applicable to many practical system configurations 
where multiple applications are run in parallel on the 
same server, or for multi-threaded applications that 
perform communication over multiple socket 
connections in parallel. 

2.3. Memory registration scheme 

As mentioned above (section 1.1), RDMA 
operations can address only registered memory for 
both sides of the data transfer. Memory registration 
involves pin-down and registration with the HCA. 

The simplest approach to memory registration 
involves registering the memory before starting each 
send/receive operation, and deregistering it once the 
operation is completed. However, memory registration 
overhead was identified [7] [8] as a major bottleneck 
for zero-copy performance in existing processor and 
I/O device architectures. Memory registration latency 
measurements are presented in [7]. Caching or 
batching memory registrations are common techniques 
to reduce or amortize the registration overhead. 
Different cache management approaches have been 
proposed [9]. When such a pin-down/registration 
cache is used, good bandwidth and CPU utilization is 
demonstrated. When memory registration is not done 
explicitly by the application (as is the case for sockets-
based applications), such cache design may be 
complicated by the need to track memory allocations 
and/or de-allocations, to avoid cache hits on de-
allocated memory.  

We took a different approach to memory 
registration, with different strategies for memory 
pinning and registration with the HCA. Our 
implementation performs page pinning at least once on 
each send() and recv() operation. The memory is 
unpinned once the operation is completed. On the 
other hand, we avoid the overhead of setting up and 
tearing down HCA translation tables for each RDMA 
operation by caching these operations. We further 
reduce the overhead of the registration with the HCA 
by using the Fast Memory Region (FMR), similarly to 
[10].  

FMR infrastructure is the fastest interface for 
memory registration with the HCA. The FMR is a 
Mellanox feature extending the 1.1 InfiniBand 
specification. A similar feature was added later on to 
the 1.2 InfiniBand specification. 

The FMR API defines a resource pool of blank 
memory regions. When a mapping is required, a blank 
memory region is taken out of the pool and a mapping 
is applied to it. In the mapping process we take a list of 
physical pages, combine them together into a virtual 
space, and create a memory region. This memory 
region has a virtual address and a key, and is 
accessible for DMA access (local or remote). Accesses 
to this memory region are mapped to the physical 
memory pages that were registered. 

When a mapping is no longer required, the memory 
region is returned back to the pool and can be reused. 
We also maintain a cache of mapped regions, and 
perform a cache lookup by physical address each time 
a mapping is requested. If such a mapping already 
exists in the pool, the matching memory region is used. 

FMR well suites kernel applications. Unlike regular 
memory registration techniques, FMR does not require 
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any handshake (such as interrupts) with the hardware. 
Memory is being registered directly through direct 
access to the HCA translation tables. Because of this, 
FMR has significantly lower overhead of memory 
registration with the HCA compared with the regular 
registration.  

In kernel, we use the get_user_pages() primitive to 
lock user pages in physical memory (pinning). Once 
the memory is locked, it can be made accessible for 
DMA by the device.  

Get_user_pages() locks pages in physical memory, 
and prevents this physical memory from being 
reassigned to another process or another virtual 
address. However it does not guarantee that the virtual 
address mapping to these pages will not be remapped 
to another physical page. Thus, for the receive side, 
extra care must be taken to ensure that once the 
RDMA operation is complete, the application can 
access the transferred data through the virtual address. 

Memory unpinning is performed by the put_page() 
primitive. When buffers have been used to receive 
data, we also need to mark the pages as dirty to ensure 
that the virtual memory subsystem performs a write-
back when a page is swapped out. 

2.4. RDMA implementation at the data source 

For the data source, the decision whether to go 
through the ZCopy or BCopy path is taken according 
to the message size and the ZCopy threshold values. 
There are two other parameters that are taken into 
consideration: current SDP data transfer mode (ZCopy 
not allowed if in Buffered mode) and the 
socket/message flag (ZCopy is not allowed if the 
operation is non-blocking). When the ZCopy path is 
selected, the user buffer is locked through the 
get_user_pages() primitive. The buffer is then 
registered through an FMR, and a SrcAvail message is 
sent to the remote peer. SDP then blocks until an 
RdmaRdCompl message is received. This message 
indicates that the data sink has completed reading the 
buffer.  

The RdmaRdCompl message is received by a 
kernel thread, which awakens the blocking process. 
The FMR is then returned to the FMR resource pool, 
and the buffer is unpinned by a call to put_page(). The 
send() call then returns. 

Each FMR allocated in the FMR pool contains 32 
pages. In other words, a single FMR can map up to 
128KB of user buffer memory. Longer messages are 
broken into smaller chunks and each one of them is 
pinned and registered separately. Then, depending on 
the current SDP data transfer mode, an advertisement 
is generated. If the current data transfer mode is 

Combined, only a single advertisement is generated. If 
the current mode is Pipelined, multiple advertisements 
are generated; the number of advertisements is 
negotiable at connection establishment time. The 
calling process then blocks until all SrcAvail 
advertisements have been consumed and all 
corresponding RdmaRdCompl messages have been 
received. If the data source has multiple SrcAvail to 
advertise, it will typically request transition to the 
Pipelined mode. 

Signal handling is not fully implemented in our 
prototype. When a process is blocked waiting for an 
RdmaRdCompl message to arrive, a signal may arrive 
that requires returning from the send() call. Since an 
advertisement is outstanding at this time, it must be 
revoked by sending a SrcAvailCancel message. When 
this message is acknowledged (at the SDP protocol 
level), we can safely return from the send() call - 
having unpinned and deregistered the buffer. If the 
acknowledgement does not arrive within a reasonable 
time, the implementation may assume a protocol error 
and abort the connection.  

2.5. RDMA implementation at the data sink 

The receive path is triggered through two entry 
points: recv() calls and arrival of SrcAvail messages.  

In case of the recv() call, the ZCopy or BCopy path 
is selected, according to the message size and the 
ZCopy threshold values. Note that there are other 
parameters that may bias our decision to perform 
ZCopy, e.g., if there is already buffered data in SDP 
buffers. If the ZCopy path is chosen, the buffers are 
pinned through the get_user_pages() call and an FMR 
mapping is obtained for these pages. We then check if 
there is an outstanding SrcAvail. If there is none, the 
calling process is blocked waiting for SrcAvail. If a 
SrcAvail is pending, an RDMA Read is issued to get 
the buffers. Once RDMA Read is completed, an 
RdmaRdCompl message is sent, the FMR is returned 
to the FMR pool, the buffer is unpinned, and the recv() 
call returns. 

If recv() is called with a buffer size below ZCopy 
threshold while there is an outstanding SrcAvail, 
RDMA Read is performed into kernel buffers and data 
is copied into user buffers through copy_to_user() call. 

Upon arrival of a SrcAvail message while some 
user buffers are outstanding, RDMA Read operations 
are performed. Once all RDMA Read operations 
complete, an RdmaRdCompl message is sent and the 
process unblocks. The buffers are then deregistered, 
unpinned, and the recv() call returns. If buffers are not 
available, the SrcAvail is left to be picked up later on 
by further recv() calls. 
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Since each FMR is restricted to a 128KB block, 
multiple blocks may be required for a single recv() 
call. If SrcAvail messages arrive for only a few of 
these blocks and no RDMA Read operations are 
outstanding, the untouched blocks are deregistered and 
the recv() call returns to the user. This is done to 
satisfy the recv() low watermark condition. We note 
that this scenario can cause extra pinning, unpinning 
and registration, which can result in high CPU 
utilization on large messages when the data source and 
sink are not synchronized with their send/receive sizes.  

A similar case occurs when the receiver is blocked 
waiting for SrcAvail, but instead BCopy data arrives. 
The data is then copied from the SDP buffers into the 
application buffer, the buffers are unpinned, and the 
FMR is returned to the FMRs pool. Essentially, these 
buffers were pinned unnecessarily. 

The unpinning process on the data sink side is more 
complicated. Although get_user_pages() locks the 
buffer in physical memory preventing the operating 
system from granting this memory to another process, 
it is not guaranteed that the virtual address space of the 
process will be permanently  mapped to those same 
physical pages. For example, when a process calls 
fork(), its virtual space is marked for copy-on-write. A 
memory write access will then force the accessed page 
to be copied to another physical address, and the 
virtual address to be remapped to the new location – 
even if the physical page is locked. 

Once the RDMA Read operation is completed, the 
data lands in physical buffers that were locked through 
a call to get_user_pages(). To make sure that the user 
virtual address has not been remapped, we perform 
another call to get_user_pages() and compare the two 
page lists. If the lists are identical, the virtual to 
physical mapping of the process has been preserved, so 
that the data is already located in the right pages. If 
get_user_pages() returns a different page list, 
copy_to_user() is called to place the data into user 
buffers. Finally, put_page() is called twice for each 
page to unlock it. Before unlocking the memory, we 
call set_page_dirty() for each physical page to indicate 
to the memory manager that the HCA has performed 
DMA write operations into these buffers. 

2.6. Choosing the ZCopy threshold 

The ZCopy Threshold is one of the most important 
parameters that should be tuned in an SDP 
implementation. Two mechanisms are used to select 
the threshold value: 
• Default threshold – is settable through an SDP 

module parameter. 
• Per connection threshold – a socket option allows 

setting/reading the ZCopy threshold per socket.  
The following considerations have to be taken into 

account when tuning the ZCopy threshold at the 
system level: In cases where a single socket is used, 
setting the ZCopy threshold at the crossover point of 
the ZCopy/BCopy bandwidth equilibrium will yield 
the best bandwidth with the optimal CPU utilization; 
In the case where multiple sockets are used in parallel, 
ZCopy threshold can be set to a lower value and 
provide better results in terms of bandwidth and CPU 
utilization; ZCopy threshold may impact latency, 
which we haven't analyzed in this paper.  

3. Benchmarking environment 

In this section we focus on the results collected and 
discuss how a lower ZCopy threshold can perform well 
at the system level. 

3.1. Benchmarks 

Iperf [11] benchmark version 1.7.0 was used for 
bandwidth measurements. This utility creates a number 
of TCP socket connections between two computers: 
server and client. Messages of fixed size are sent 
repeatedly through each socket, from client to server. 
Each socket is operated from a dedicated thread. The 
TCP bandwidth is calculated as the aggregate number 
of bytes transferred per second over the sockets. We 
note that the bandwidth measured is uni-directional. 

CPU utilization was measured by running 
vmstat(1) in parallel with the benchmark. Vmstat 
reports the CPU idle time in % in 1 second intervals. 
The CPU utilization is calculated as 100% minus CPU 
idle time. Since the CPU may be occupied by other 
system activities, this represents an upper bound on the 
aggregate CPU utilization by the SDP stack. 

The machines we benchmarked are dual CPU with 
Hyper Threading (HT) enabled, resulting in 4 logical 
CPUs reported by the OS. The vmstat measurement 
reports 100% CPU utilization that accounts for 4 fully 
utilized CPUs. For simplicity, we normalized the 
results to the actual number of CPUs by multiplying 
the results by 4. In other words, when our graphs 
indicate 400%, it means that 4 CPUs are fully utilized, 
and 100% accounts for a single CPU equivalent. The 
CPU utilization that we present is averaged over time, 
and between the send and receive sides. 

This study does not include latency measurements. 
Our goal is to compare SDP ZCopy and BCopy 
performance. We assume that in practice latency is 
typically relevant only for small message sizes, which 
do not cross the ZCopy threshold. In these cases, SDP 
uses the BCopy mechanism following the original SDP 
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implementation BCopy path, without changes. For this 
reason, our implementation is expected to have the 
same latency for small messages as the original 
implementation. SDP latency for BCopy has already 
been studied in [6] and [12]. 

3.2. Benchmarking platform 

Our benchmarking platform included two Dell 
1750 servers with a Mellanox InfiniHost host channel 
adapter installed in a PCI-X 64/133MHz slot on each 
server, and connected back-to-back through a 4X 
InfiniBand cable. Each server had two Intel Xeon 
3GHz CPUs in an SMP configuration with 0.5MB 
cache each, and 2GB 266MHz DDR SDRAM. Hyper-
Threading (HT) was enabled such that 4 logical CPUs 
are presented to the operating system (preliminary 
experiment showed no HT impact on CPU utilization 
normalized into a 0% to 100% scale). Both HCAs were 
flashed with 3.3.2 firmware version. 

The software stack is based on the Mellanox Gold 
Collection version 1.7.0 with the additional 
implementation of ZCopy support for synchronous 
operations. 

4. Performance results and analysis  

4.1. Single connection 

The first experiment used a single active socket 
connection. We measured the bandwidth obtained and 
the CPU utilization. The CPU utilization numbers 
below are averaged over time as well as between 
server and client. We compared ZCopy and BCopy by 
running the benchmark twice, with ZCopy threshold 
set to 0 and to infinity respectively. As shown in 
Figure 6, for small messages up to 256KB, BCopy 
path provides better bandwidth. Starting at 256KB, the 
cross-over point, ZCopy achieves better bandwidth 
than BCopy. The CPU overhead is lower throughout 
the experiment for ZCopy path. For small messages 
BCopy CPU utilization is around 100% on average, 
where for ZCopy it is around 40%. As message sizes 
increase, ZCopy CPU utilization decreases to as low as 
20%.  

The drop in BCopy bandwidth for messages longer 
than 256KB can be explained by cache flushing: 
copying 256KB requires 512KB of memory, utilizing 
the entire 512KB CPU cache. We note that this data 
copy behavior has been observed in other papers, for 
SDP [6] as well as other protocols. E.g. [8], observes a 
similar drop for PM 1.0 protocol over Myrinet. 
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Figure 6: ZCopy vs BCopy bandwidth and CPU 
utilization for a single connection 

4.2. Multiple simultaneous connections 

In the second set of experiments multiple socket 
connections were run in parallel. We compared BCopy 
and ZCopy performance. A sample of our results is 
presented in Figure 7 through Figure 9. The 
BCopy/ZCopy cross-over point decreases as the 
number of connections grows: 256KB for 1 
connection, 64KB for 2 connections, 32KB for 4 
connections and 16KB for 8 connections. This makes 
ZCopy more compelling as the number of connections 
increases. 
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Figure 7: BCopy vs ZCopy bandwidth and CPU 
utilization for two simultaneous connections 

BCopy vs ZCopy (4 Connections)
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Figure 8: BCopy vs ZCopy bandwidth and CPU 
utilization for four simultaneous connections 
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BCopy vs ZCopy (8 Connections)
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Figure 9: BCopy vs ZCopy bandwidth and CPU 
utilization for eight simultaneous connections 

The average CPU utilization is substantially lower 
with ZCopy than with BCopy. ZCopy CPU utilization 
is below 50% for messages larger than 128KB, while 
for BCopy all the CPUs get saturated. The aggregate 
bandwidth that ZCopy is able to deliver is substantially 
higher than that of BCopy. When running 8 
simultaneous connections, ZCopy sustains more than 
700MB/s while BCopy only delivers 500MB/s. 

Presenting the same results from a different angle, 
we compare the bandwidth and the CPU utilization for 
64KB and 1MB messages running ZCopy and BCopy 
as a function of the number of concurrent connections.  
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Figure 10: Bandwidth, variable message size, 
concurrent connections 
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Figure 11: Average CPU utilization, variable 
message size, concurrent connections 

Figure 10 and Figure 11 show that for 2 or more 
connections for 64KB messages, and for any number 

of connections for 1MB messages, ZCopy achieves 
superior bandwidth to BCopy while maintaining 
significantly lower CPU utilization. While BCopy 
substantially overloads the 4-CPU server (dual CPU 
with HT enabled), ZCopy achieves the same results 
utilizing less than 50% of a single CPU!  

4.3. Per byte overhead 

The per-byte overhead is measured in units of 
usec/KB and is calculated as follows: Per-byte 
overhead = CPU utilization / Bandwidth. 
The lower the per-byte overhead, the less CPU is spent 
for sending a networking message with a certain size. 
Figure 12 shows the per-byte overhead for variable 
message size while 1, 2 and 8 connections are active 
simultaneously. Message sizes between 4 to 16 KB 
represent a cross-over point where ZCopy usage 
becomes more compelling than BCopy, as it requires 
less CPU to deliver the same message. As the number 
of concurrent connections increases, the per-byte 
overhead for the BCopy path increases. This turns 
ZCopy to beneficial at even smaller messages than 
4KB. 
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Figure 12: Per-byte overhead 

5. Future work 

Multiple enhancement options for improving SDP 
performance remain to be explored, including: user-
land implementation of SDP and comparison with the 
kernel implementation; full implementation of 
pipelined mode and usage of Write ZCopy; delayed 
registration strategies may be applied for the receive 
flows.  

More rigorous analysis is encouraged: detailed 
analysis of individual, bandwidth rather than aggregate 
bandwidth and per side CPU utilization, rather than 
average; more latency and bandwidth scenarios; more 
CPU and cache configurations including non x86 CPU 
analysis; ZCopy SDP benchmarking on data center 
applications. 
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SDP ZCopy scalability in multiple node clusters 
has to be studied. Scalability enhancements need to be 
considered, such as: using Shared Receive Queues; 
reducing the number of Completion Queues; tuning the 
buffer allocation algorithm. 

6. Conclusion 

As network speeds increase, CPU copying becomes 
expensive unless zero copy techniques are being used. 
No matter how strong the CPU is, without zero copy it 
will end up choked by copying at soaring networking 
speeds. 

SDP with the ZCopy path does a great job of 
increasing the CPU effectiveness for application 
processing.  

SDP allows existing applications to transparently 
utilize InfiniBand high performance capabilities 
without any code changes. While existing SDP 
implementations only allowed ZCopy on AIO path, we 
demonstrate a portable ZCopy on the standard socket 
blocking synchronous calls. 

We demonstrated an approach where there is no 
pin-down cache; all memory is pinned and unpinned 
on each access. Caching was only used for hardware 
translations.  

We demonstrated benefits of utilizing the ZCopy 
path for socket synchronous calls. For a single 
connection, the bandwidth cross-over point between 
BCopy and ZCopy occurs at a relatively large message 
size. This is caused by the inability of the SDP 
implementation to pipeline messages because of the 
synchronous nature of blocking socket calls. Pipelining 
can be achieved amongst multiple concurrent 
connections. As the number of connections increases, 
the cross-over point decreases down to 8KB message 
size (running a handful of connections) and below. The 
CPU utilization is also reduced significantly. We 
believe this makes ZCopy beneficial to a wide range of 
applications and systems.  

System-level ZCopy threshold tuning for general 
multi-tasking applications (rather than a single-
connection benchmark) achieves the best overall 
system performance (aggregate bandwidth and CPU 
utilization) without need for application-specific 
tuning. 
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