
 1

Zero Copy Sockets Direct Protocol over InfiniBand - Preliminary
Implementation and Performance Analysis

Dror Goldenberg, Michael Kagan, Ran Ravid, Michael S. Tsirkin
Mellanox Technologies Inc.

{gdror, michael, ranr, mst} @ mellanox.co.il

Abstract
Sockets Direct Protocol (SDP) is a byte-stream

transport protocol implementing the TCP
SOCK_STREAM semantics utilizing transport
offloading capabilities of the InfiniBand fabric. Under
the hood, SDP supports Zero-Copy (ZCopy) operation
mode, using the InfiniBand RDMA capability to
transfer data directly between application buffers.
Alternatively, in Buffer Copy (BCopy) mode, data is
copied to and from transport buffers.

In the initial open-source SDP implementation,
ZCopy mode was restricted to Asynchronous I/O
operations. We added a prototype ZCopy support for
send()/recv() synchronous socket calls.

This paper presents the major architectural aspects
of the SDP protocol, the ZCopy implementation, and a
preliminary performance evaluation. We show
substantial benefits of ZCopy when multiple
connections are running in parallel on the same host.
For example, when 8 connections are simultaneously
active, enabling ZCopy yields a bandwidth growth
from 500MB/s to 700MB/s, while CPU utilization
decreases 8 times.

1. Introduction

The InfiniBand architecture [1] introduces a high
bandwidth, low latency interconnect with RDMA
capabilities, running at up to 120 gigabit per second
link speeds. Current implementations support up to 20
gigabit per second wire speed on Host Channel
Adapters (HCAs), and 60 gigabit per second on
switches. Upper layer protocols have been developed
providing standard interfaces to existing frameworks
and applications on top of HCA devices. The most
commonly used protocols are Message Passing
Interface (MPI), IP over InfiniBand (IPoIB), Sockets
Direct Protocol (SDP), SCSI RDMA Protocol (SRP),
and Direct Access Provider Library (DAPL).

In this paper we discuss modifications to the
InfiniBand open-source implementation of SDP ([4],
[5]). We have extended the SDP implementation, and

added zero copy (ZCopy) support on the synchronous
I/O path. The implementation has been developed up
to the prototype level, and enables us to benchmark the
implementation performance.

1.1. Introduction to InfiniBand

The InfiniBand architecture defines a System Area
Network that connects processor nodes and I/O
devices. This network may comprise multiple subnets
connected by routers. Each subnet may contain one or
more InfiniBand Switches. Processor nodes and I/O
devices connect to the InfiniBand fabric through Host
Channel Adapters (HCA) and Target Channel
Adapters (TCA) respectively, as illustrated in . Figure 1

Switch

Subnet A Subnet B

Router
TCA

Server

HCA

Server

HCA

Server

HCA

Switch

Figure 1: InfiniBand fabric basic components
The HCA device plugs into the host I/O subsystem.

The HCA contains sophisticated DMA engine,
transport engine, and management capabilities. The
key contributions of the HCA to the system
performance are:
• Transport offload – the HCA can perform all

transport tasks, thus making it possible for the
application to send and receive data reliably with
minimal software overhead. This includes
segmentation and reassembly, retransmission,
transport checks, timers, etc.

• Zero Copy – the HCA is capable of exposing user
or kernel memory buffers to the InfiniBand fabric.
A remote HCA can then read or write data from
and into these buffers by performing Remote
DMA (RDMA) operations. RDMA operations
make it possible to convey application buffers

Copyright 2005 IEEE

 2

over the fabric, without involving the host CPU,
while avoiding copying buffers into intermediate
communication pre-allocated buffers.

• Kernel Bypass – through special protection
enforcement mechanisms, the InfiniBand allows
user applications to directly interact with the HCA
hardware in order to send and receive messages.
Kernel Bypass reduces the communication
overhead for user-space applications.

In order to allow RDMA operations, the consumer
must perform memory registration. Memory
registration involves:
• Pin-Down – registered memory must be locked in

physical memory and accessible by the HCA.
• Registration with the HCA – configuration of the

HCA hardware to grant certain permissions to
application buffers. This includes access right
setting, association with a set of connections, and
setup of HCA translation tables.

The InfiniBand specification defines an HCA
interface called Verbs [1]. The Verbs provide
operations for resource management and data transfer
operations. The communication is based on Queue
Pairs (QPs). InfiniBand supports Send/Receive,
RDMA Read, and RDMA Write operations. These
operations are initiated by posting Work Requests on
the Send or Receive Queue (SQ/RQ). Data transfer
operations are asynchronous. The HCA reports
completion of Work Requests asynchronously by
posting Completion Queue Elements (CQEs) to
Completion Queues.

Figure 2: Data operation interface
The completion semantics depend on the transport

service of the QP. For a reliable queue, a CQE is
generated after data arrival to the remote destination is
acknowledged. For an unreliable queue, a CQE is
generated once data has been transmitted to the fabric.
Completion of a receive request is generated when data
arrives to the local receive queue.

Receive operations require that the consumer pre-
posts receive buffers. Incoming RDMA operations do
not require pre-posted buffers on the receive side and
are handled at the transport level without involving the

host CPU. The consumer can observe Work Request
completions by polling the Completion Queue, or by
requesting completion notifications that are delivered
by means of hardware interrupts. Figure 2 illustrates
the InfiniBand asynchronous interface for data
operations exported through the Verbs.

1.2. Sockets Direct Protocol

Traditional implementations of TCP sockets
typically require data copy between application buffers
and NIC kernel buffers, segmentation, reassembly and
other transport handling. These three operations
consume CPU and memory resources, and become a
performance bottleneck for high speed interconnects.

Data copying overhead has been identified in the
1990s as a significant CPU consumer in TCP stacks
[2]. Protocol offload implementations addressed this
overhead by implementing zero copy [3].

The Sockets Direct Protocol (SDP) (added as an
annex to the InfiniBand architecture specification [1]
on April 2002) eliminates the protocol stack
bottlenecks for InfiniBand-based networks. SDP is a
byte stream protocol that mimics TCP
SOCK_STREAM semantics. Existing socket-based
applications can use the SDP protocol for
communication over the InfiniBand fabric, without any
code modification or recompilation. Traditional
TCP/IP is used outside the InfiniBand fabric.

As illustrated in Figure 5, an implementation of
SDP resides between the software socket interface and
the InfiniBand Verbs interface. Right under the socket
interface, there is a Socket Switch that chooses
between an SDP and a regular TCP socket for each
particular connection, according to a configurable
policy.

SDP is implemented on top of the InfiniBand
Reliable Connection (RC) transport service, and
leverages the reliability and transport checks
implemented by the HCA hardware. SDP maps the
socket send()/recv() calls to InfiniBand operations.
Data messages are transferred by SEND and RDMA
operations. Control messages are transferred by SEND
messages. SDP supports two data transfer types:
Buffer Copy (BCopy) and Zero Copy (ZCopy).

BCopy uses dedicated, pre-registered private SDP
buffers. Data is copied from application buffers into
SDP buffers; data transfer is then performed using the
SEND operation. On the receive side, the data lands in
pre-registered SDP buffers and is then copied into
application buffers. Figure 3 illustrates the BCopy
flow. In this example, the receiver (data sink) had been
waiting for data before the data arrived. In case where
the receiver is slow, the data will wait in the SDP

Copyright 2005 IEEE

 3

buffers until the receiver calls recv(). A flow control
mechanism makes it possible for the receiver to limit
the number of outstanding SDP buffers. On the sender
(data source) side, the send() call returns as soon as the
data is copied into the local SDP buffer.

Figure 3: BCopy flow

ZCopy avoids the data copy overhead by direct
data transfer between application buffers through
RDMA operations.

Application buffers are typically not registered.
Therefore, in order to enable RDMA operations, the
buffers must be pinned and registered by the SDP
stack implementation.

SDP supports two modes of ZCopy operation:
Read ZCopy and Write ZCopy.

A Read ZCopy flow is illustrated in Figure 4. In
this example, the data source gets an application buffer
to send. If the buffer is large enough, the data source
registers and advertises it by sending a SrcAvail
message to the data sink. Later, a buffer is posted on
the data sink. The buffer is registered and an RDMA
Read is performed, copying the data source buffers
into data sink application buffers. Once the RDMA
Read is completed, the data sink indicates this by
sending an RdmaRdCompl message to the data source.
Note that it is also possible to perform an RDMA Read
into local SDP buffers.

Write ZCopy uses an RDMA Write for data
transfer. The data sink advertises a buffer by sending a
SinkAvail message. The data source will then RDMA
Write the buffer. Once the RDMA Write is completed,
the data source indicates this by sending an
RdmaWrCompl message. Read ZCopy is typically
useful when the receiver is slower than the sender,
while Write ZCopy is typically useful when the sender
is slower than the receiver.

App
Buff

Send()

SDP SDP Wire

Register and
advertise SrcAvail

Recv()

Wait for app
to post

Indicate
Completion

Return

Register and
RDMA Rd

RDMA Rd

RdmaRd
Compl

Deregister Deregister Return

Effective wire time
Overhead

App
Buff

App
Buff

Send()

SDP SDP Wire

Copy
To SDP
Buffer

Send
Return Return

when copy
is done

Recv()
Block
waiting for
data

Copy
To App
Buffer Return

App
Buff

Figure 4: Read ZCopy flow
Both BCopy and ZCopy modes incur some

communication overhead. While with BCopy we incur
the overhead of a local data copy, in ZCopy mode we
incur the overhead of locking the application buffers in
physical memory, their registration with the HCA, and
additional communication overhead. Thus, the SDP
implementation uses a ZCopy threshold parameter to
determine whether to take the ZCopy path or the
BCopy path. We will discuss strategies for ZCopy
threshold selection later on in this paper.

Each SDP half-connection has three possible data
delivery modes:
• Buffered – only BCopy operations are allowed
• Combined – BCopy and Read ZCopy are allowed.

It is not allowed to advertise more than one
ZCopy buffer.

• Pipelined – Both BCopy and ZCopy are allowed.
Pipelining of more than one advertisement is
allowed.

The transition between these modes is up to the
implementation. The protocol specification defines, for
each mode, which side can initiate a mode transition.

1.3. InfiniBand Gold Collection

The InfiniBand Gold Collection [5] is an open-
source Verbs and ULP stack implementation. It is
based on the initial Linux open source code that was
posted on the OpenIB Alliance web site [4], and has
been further enhanced and stabilized by Mellanox.

The InfiniBand Gold Collection is implemented for
the Linux operating system and supports numerous
Linux kernels including several 2.4 and 2.6 kernels. As

Copyright 2005 IEEE

 4

of version 1.7.0, it includes an SDP implementation
with BCopy support. Originally, it did not utilize
ZCopy for synchronous send()/recv() operations:
ZCopy was utilized exclusively for asynchronous I/O
(AIO), and supported only certain kernel versions.
(See Section 2 below for a description of Zcopy design
and implementation for synchronous send()/recv()
operations.)

SDP is implemented as a kernel module with a
socket switch in a user-mode library (libsdp), as
illustrated in Figure 5. The socket switch makes it
possible to listen simultaneously on both SDP and TCP
sockets. The socket switch policy specifies whether an
SDP or TCP socket shall be preferred based on the
application name, IP address or port number.

Figure 5: Gold CD SDP stack components

The SDP protocol is registered with the kernel as a
new AF_INET_SDP protocol family. The socket
switch is implemented as a user-mode shared library.
When loaded, it overrides the application socket calls.
When a socket is created, the socket switch determines
whether a TCP or an SDP socket is required, and
creates an AF_INET or an AF_INET_SDP socket
object. An AF_INET_SDP object is implemented by
the SDP stack kernel module. This module implements
all socket entry points (net_proto_family and
proto_ops) that are invoked by the kernel: create,
release, bind, connect, accept, sendmsg, etc.

Since the entire SDP implementation is in the
kernel, it does not leverage the kernel bypass
capability of the InfiniBand architecture. Nevertheless,
transport offload is fully utilized, which was shown to
be beneficial to both bandwidth and CPU utilization
[6]. In the following section, we discuss the design for
making use of the RDMA hardware capability.

2. Zero Copy implementation

2.1. Design objectives

Our major design goal was to enable true zero copy
support for synchronous socket operations in SDP.

The zero copy capability for synchronous
operations was not included in the original open source
stack [4]. Thus, the stack effectively behaved as if the
ZCopy threshold was set to infinity. The ZCopy
scheme was only supported for the asynchronous I/O
(AIO) calls. This capability cannot be directly
extended to support synchronous operations, for the
following reasons:
• ZCopy was supported only for kernel version

2.4.21-15 Red Hat Advanced Server 3.0 update 2.
On this kernel, the AIO subsystem takes care of
pinning the buffers. To be more accurate, it maps
the user-land buffers into the kernel address space.
On the contrary, synchronous socket calls do not
perform this mapping of buffers to kernel.

Application Socket
Interface

Libsdp.so (socket switch)

AF_INET

TCP/IP Stack

AF_INET_SDP

SDP Stack

Verbs
Interface

HCA Driver

User
Kernel

Protocol Switch

IPoIB

• The AIO subsystem is asynchronous in its nature,
therefore it maps nicely to the InfiniBand model.
Whereas synchronous calls require some blocking
code to be implemented and some heuristics to be
considered as to which operation path to take.

• The AIO code supports multiple simultaneous
operations, while synchronous operations allow
only one outstanding transaction at a certain time.

Note that if the message is being sent or received
with a MSG_DONTWAIT flag, or if the socket has
been configured with the O_NONBLOCK option, then
the socket implementation cannot block in order to
exchange key information and RDMA the data. Thus,
ZCopy is used only for blocking synchronous socket
calls. The non-blocking synchronous calls default to
BCopy mode in order to preserve their semantics.

Design and implementation are discussed in further
detail in the following subsections.

2.2. Pipelining and data transfer modes

The fundamental difference between ZCopy and
BCopy modes (when using the synchronous socket
calls) is the ability to pipeline transactions on the wire.

In BCopy mode, user data is copied into kernel
SDP buffers and is then sent over the wire. On the data
source side, when processing the send() call, SDP will
copy the user data into an SDP buffer, will post a work
request to the HCA and return from the send() call.
This way, the user may submit multiple send()
operations to the SDP layer, while some of the
previous send() operations are in flight (see Figure 3:

Copyright 2005 IEEE

 5

BCopy). This pipelining capability makes it possible
to sustain high bandwidth over a single connection.
Nevertheless, the CPU will be busy copying data.

In our implementation pipelining is not possible
when using ZCopy on synchronous socket calls. Read
ZCopy flow is illustrated in Figure 4. The user buffer
on the send side must be kept unmodified, pinned and
registered until the RDMA completes. To prevent the
user from modifying (or even de-allocating) the data
buffer, the send() operation must block until the
transaction completes. Only after data has been fully
transferred through an RDMA operation, including the
handshake (RdmaRdCompl or RdmaWrCompl
message), the send() call may return and the
application may send the next message. Thus,
regardless of the ZCopy flavor chosen, pipelining is
not possible in our implementation for blocking
synchronous socket calls. Therefore, the bandwidth
over a single connection using ZCopy may not be as
high as it is when using BCopy. Additionally, we
expect the overhead imposed by RdmaRdCompl or
RdmaWrCompl control messages to manifest itself at
relatively small message sizes. Figure 4 shows for a
specific transaction the effective time (where data
flows through the wire) along with the non-effective
time (protocol handshake). The larger the message
size, the smaller the overhead part of the transaction,
and therefore the better the bandwidth that can be
obtained.

For the blocking socket operations we chose to
implement only the Read ZCopy flow, which is used in
Buffered and Combined data delivery modes. The
implementation of Write ZCopy flow, used only in
Pipelined mode, is suggested for future work.

While extending the scope to multiple socket
connections running concurrently, the overhead of one
connection overlaps with those of other connections as
well as with data transfer on the wire. Thus, when
running multiple connections concurrently, SDP
delivers high performance using ZCopy for relatively
low message sizes. We believe that the model of
multiple sockets being active at the same time is
applicable to many practical system configurations
where multiple applications are run in parallel on the
same server, or for multi-threaded applications that
perform communication over multiple socket
connections in parallel.

2.3. Memory registration scheme

As mentioned above (section 1.1), RDMA
operations can address only registered memory for
both sides of the data transfer. Memory registration
involves pin-down and registration with the HCA.

The simplest approach to memory registration
involves registering the memory before starting each
send/receive operation, and deregistering it once the
operation is completed. However, memory registration
overhead was identified [7] [8] as a major bottleneck
for zero-copy performance in existing processor and
I/O device architectures. Memory registration latency
measurements are presented in [7]. Caching or
batching memory registrations are common techniques
to reduce or amortize the registration overhead.
Different cache management approaches have been
proposed [9]. When such a pin-down/registration
cache is used, good bandwidth and CPU utilization is
demonstrated. When memory registration is not done
explicitly by the application (as is the case for sockets-
based applications), such cache design may be
complicated by the need to track memory allocations
and/or de-allocations, to avoid cache hits on de-
allocated memory.

We took a different approach to memory
registration, with different strategies for memory
pinning and registration with the HCA. Our
implementation performs page pinning at least once on
each send() and recv() operation. The memory is
unpinned once the operation is completed. On the
other hand, we avoid the overhead of setting up and
tearing down HCA translation tables for each RDMA
operation by caching these operations. We further
reduce the overhead of the registration with the HCA
by using the Fast Memory Region (FMR), similarly to
[10].

FMR infrastructure is the fastest interface for
memory registration with the HCA. The FMR is a
Mellanox feature extending the 1.1 InfiniBand
specification. A similar feature was added later on to
the 1.2 InfiniBand specification.

The FMR API defines a resource pool of blank
memory regions. When a mapping is required, a blank
memory region is taken out of the pool and a mapping
is applied to it. In the mapping process we take a list of
physical pages, combine them together into a virtual
space, and create a memory region. This memory
region has a virtual address and a key, and is
accessible for DMA access (local or remote). Accesses
to this memory region are mapped to the physical
memory pages that were registered.

When a mapping is no longer required, the memory
region is returned back to the pool and can be reused.
We also maintain a cache of mapped regions, and
perform a cache lookup by physical address each time
a mapping is requested. If such a mapping already
exists in the pool, the matching memory region is used.

FMR well suites kernel applications. Unlike regular
memory registration techniques, FMR does not require

Copyright 2005 IEEE

 6

any handshake (such as interrupts) with the hardware.
Memory is being registered directly through direct
access to the HCA translation tables. Because of this,
FMR has significantly lower overhead of memory
registration with the HCA compared with the regular
registration.

In kernel, we use the get_user_pages() primitive to
lock user pages in physical memory (pinning). Once
the memory is locked, it can be made accessible for
DMA by the device.

Get_user_pages() locks pages in physical memory,
and prevents this physical memory from being
reassigned to another process or another virtual
address. However it does not guarantee that the virtual
address mapping to these pages will not be remapped
to another physical page. Thus, for the receive side,
extra care must be taken to ensure that once the
RDMA operation is complete, the application can
access the transferred data through the virtual address.

Memory unpinning is performed by the put_page()
primitive. When buffers have been used to receive
data, we also need to mark the pages as dirty to ensure
that the virtual memory subsystem performs a write-
back when a page is swapped out.

2.4. RDMA implementation at the data source

For the data source, the decision whether to go
through the ZCopy or BCopy path is taken according
to the message size and the ZCopy threshold values.
There are two other parameters that are taken into
consideration: current SDP data transfer mode (ZCopy
not allowed if in Buffered mode) and the
socket/message flag (ZCopy is not allowed if the
operation is non-blocking). When the ZCopy path is
selected, the user buffer is locked through the
get_user_pages() primitive. The buffer is then
registered through an FMR, and a SrcAvail message is
sent to the remote peer. SDP then blocks until an
RdmaRdCompl message is received. This message
indicates that the data sink has completed reading the
buffer.

The RdmaRdCompl message is received by a
kernel thread, which awakens the blocking process.
The FMR is then returned to the FMR resource pool,
and the buffer is unpinned by a call to put_page(). The
send() call then returns.

Each FMR allocated in the FMR pool contains 32
pages. In other words, a single FMR can map up to
128KB of user buffer memory. Longer messages are
broken into smaller chunks and each one of them is
pinned and registered separately. Then, depending on
the current SDP data transfer mode, an advertisement
is generated. If the current data transfer mode is

Combined, only a single advertisement is generated. If
the current mode is Pipelined, multiple advertisements
are generated; the number of advertisements is
negotiable at connection establishment time. The
calling process then blocks until all SrcAvail
advertisements have been consumed and all
corresponding RdmaRdCompl messages have been
received. If the data source has multiple SrcAvail to
advertise, it will typically request transition to the
Pipelined mode.

Signal handling is not fully implemented in our
prototype. When a process is blocked waiting for an
RdmaRdCompl message to arrive, a signal may arrive
that requires returning from the send() call. Since an
advertisement is outstanding at this time, it must be
revoked by sending a SrcAvailCancel message. When
this message is acknowledged (at the SDP protocol
level), we can safely return from the send() call -
having unpinned and deregistered the buffer. If the
acknowledgement does not arrive within a reasonable
time, the implementation may assume a protocol error
and abort the connection.

2.5. RDMA implementation at the data sink

The receive path is triggered through two entry
points: recv() calls and arrival of SrcAvail messages.

In case of the recv() call, the ZCopy or BCopy path
is selected, according to the message size and the
ZCopy threshold values. Note that there are other
parameters that may bias our decision to perform
ZCopy, e.g., if there is already buffered data in SDP
buffers. If the ZCopy path is chosen, the buffers are
pinned through the get_user_pages() call and an FMR
mapping is obtained for these pages. We then check if
there is an outstanding SrcAvail. If there is none, the
calling process is blocked waiting for SrcAvail. If a
SrcAvail is pending, an RDMA Read is issued to get
the buffers. Once RDMA Read is completed, an
RdmaRdCompl message is sent, the FMR is returned
to the FMR pool, the buffer is unpinned, and the recv()
call returns.

If recv() is called with a buffer size below ZCopy
threshold while there is an outstanding SrcAvail,
RDMA Read is performed into kernel buffers and data
is copied into user buffers through copy_to_user() call.

Upon arrival of a SrcAvail message while some
user buffers are outstanding, RDMA Read operations
are performed. Once all RDMA Read operations
complete, an RdmaRdCompl message is sent and the
process unblocks. The buffers are then deregistered,
unpinned, and the recv() call returns. If buffers are not
available, the SrcAvail is left to be picked up later on
by further recv() calls.

Copyright 2005 IEEE

 7

Since each FMR is restricted to a 128KB block,
multiple blocks may be required for a single recv()
call. If SrcAvail messages arrive for only a few of
these blocks and no RDMA Read operations are
outstanding, the untouched blocks are deregistered and
the recv() call returns to the user. This is done to
satisfy the recv() low watermark condition. We note
that this scenario can cause extra pinning, unpinning
and registration, which can result in high CPU
utilization on large messages when the data source and
sink are not synchronized with their send/receive sizes.

A similar case occurs when the receiver is blocked
waiting for SrcAvail, but instead BCopy data arrives.
The data is then copied from the SDP buffers into the
application buffer, the buffers are unpinned, and the
FMR is returned to the FMRs pool. Essentially, these
buffers were pinned unnecessarily.

The unpinning process on the data sink side is more
complicated. Although get_user_pages() locks the
buffer in physical memory preventing the operating
system from granting this memory to another process,
it is not guaranteed that the virtual address space of the
process will be permanently mapped to those same
physical pages. For example, when a process calls
fork(), its virtual space is marked for copy-on-write. A
memory write access will then force the accessed page
to be copied to another physical address, and the
virtual address to be remapped to the new location –
even if the physical page is locked.

Once the RDMA Read operation is completed, the
data lands in physical buffers that were locked through
a call to get_user_pages(). To make sure that the user
virtual address has not been remapped, we perform
another call to get_user_pages() and compare the two
page lists. If the lists are identical, the virtual to
physical mapping of the process has been preserved, so
that the data is already located in the right pages. If
get_user_pages() returns a different page list,
copy_to_user() is called to place the data into user
buffers. Finally, put_page() is called twice for each
page to unlock it. Before unlocking the memory, we
call set_page_dirty() for each physical page to indicate
to the memory manager that the HCA has performed
DMA write operations into these buffers.

2.6. Choosing the ZCopy threshold

The ZCopy Threshold is one of the most important
parameters that should be tuned in an SDP
implementation. Two mechanisms are used to select
the threshold value:
• Default threshold – is settable through an SDP

module parameter.
• Per connection threshold – a socket option allows

setting/reading the ZCopy threshold per socket.
The following considerations have to be taken into

account when tuning the ZCopy threshold at the
system level: In cases where a single socket is used,
setting the ZCopy threshold at the crossover point of
the ZCopy/BCopy bandwidth equilibrium will yield
the best bandwidth with the optimal CPU utilization;
In the case where multiple sockets are used in parallel,
ZCopy threshold can be set to a lower value and
provide better results in terms of bandwidth and CPU
utilization; ZCopy threshold may impact latency,
which we haven't analyzed in this paper.

3. Benchmarking environment

In this section we focus on the results collected and
discuss how a lower ZCopy threshold can perform well
at the system level.

3.1. Benchmarks

Iperf [11] benchmark version 1.7.0 was used for
bandwidth measurements. This utility creates a number
of TCP socket connections between two computers:
server and client. Messages of fixed size are sent
repeatedly through each socket, from client to server.
Each socket is operated from a dedicated thread. The
TCP bandwidth is calculated as the aggregate number
of bytes transferred per second over the sockets. We
note that the bandwidth measured is uni-directional.

CPU utilization was measured by running
vmstat(1) in parallel with the benchmark. Vmstat
reports the CPU idle time in % in 1 second intervals.
The CPU utilization is calculated as 100% minus CPU
idle time. Since the CPU may be occupied by other
system activities, this represents an upper bound on the
aggregate CPU utilization by the SDP stack.

The machines we benchmarked are dual CPU with
Hyper Threading (HT) enabled, resulting in 4 logical
CPUs reported by the OS. The vmstat measurement
reports 100% CPU utilization that accounts for 4 fully
utilized CPUs. For simplicity, we normalized the
results to the actual number of CPUs by multiplying
the results by 4. In other words, when our graphs
indicate 400%, it means that 4 CPUs are fully utilized,
and 100% accounts for a single CPU equivalent. The
CPU utilization that we present is averaged over time,
and between the send and receive sides.

This study does not include latency measurements.
Our goal is to compare SDP ZCopy and BCopy
performance. We assume that in practice latency is
typically relevant only for small message sizes, which
do not cross the ZCopy threshold. In these cases, SDP
uses the BCopy mechanism following the original SDP

Copyright 2005 IEEE

 8

implementation BCopy path, without changes. For this
reason, our implementation is expected to have the
same latency for small messages as the original
implementation. SDP latency for BCopy has already
been studied in [6] and [12].

3.2. Benchmarking platform

Our benchmarking platform included two Dell
1750 servers with a Mellanox InfiniHost host channel
adapter installed in a PCI-X 64/133MHz slot on each
server, and connected back-to-back through a 4X
InfiniBand cable. Each server had two Intel Xeon
3GHz CPUs in an SMP configuration with 0.5MB
cache each, and 2GB 266MHz DDR SDRAM. Hyper-
Threading (HT) was enabled such that 4 logical CPUs
are presented to the operating system (preliminary
experiment showed no HT impact on CPU utilization
normalized into a 0% to 100% scale). Both HCAs were
flashed with 3.3.2 firmware version.

The software stack is based on the Mellanox Gold
Collection version 1.7.0 with the additional
implementation of ZCopy support for synchronous
operations.

4. Performance results and analysis

4.1. Single connection

The first experiment used a single active socket
connection. We measured the bandwidth obtained and
the CPU utilization. The CPU utilization numbers
below are averaged over time as well as between
server and client. We compared ZCopy and BCopy by
running the benchmark twice, with ZCopy threshold
set to 0 and to infinity respectively. As shown in
Figure 6, for small messages up to 256KB, BCopy
path provides better bandwidth. Starting at 256KB, the
cross-over point, ZCopy achieves better bandwidth
than BCopy. The CPU overhead is lower throughout
the experiment for ZCopy path. For small messages
BCopy CPU utilization is around 100% on average,
where for ZCopy it is around 40%. As message sizes
increase, ZCopy CPU utilization decreases to as low as
20%.

The drop in BCopy bandwidth for messages longer
than 256KB can be explained by cache flushing:
copying 256KB requires 512KB of memory, utilizing
the entire 512KB CPU cache. We note that this data
copy behavior has been observed in other papers, for
SDP [6] as well as other protocols. E.g. [8], observes a
similar drop for PM 1.0 protocol over Myrinet.

BCopy vs ZCopy (1 Connection)

0

100

200

300

400

500

600

700

2 4 8 16 32 64 12
8

25
6

51
2 1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M

Message Size (Bytes)

B
W

 (M
B

/s
ec

)

0

100

200

300

400

500

600

C
PU

 U
til

iz
at

io
n

(%
)

BCopy average CPU ZCopy average CPU Bcopy BW ZCopy BW
Figure 6: ZCopy vs BCopy bandwidth and CPU
utilization for a single connection

4.2. Multiple simultaneous connections

In the second set of experiments multiple socket
connections were run in parallel. We compared BCopy
and ZCopy performance. A sample of our results is
presented in Figure 7 through Figure 9. The
BCopy/ZCopy cross-over point decreases as the
number of connections grows: 256KB for 1
connection, 64KB for 2 connections, 32KB for 4
connections and 16KB for 8 connections. This makes
ZCopy more compelling as the number of connections
increases.

BCopy vs ZCopy (2 Connections)

0

100

200

300

400

500

600

700

800

2 4 8 16 32 64 12
8

25
6

51
2

1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M

Message Size (Bytes)

B
W

 (M
B

/s
ec

)

0

100

200

300

400

500

600

C
PU

 U
til

iz
at

io
n

(%
)

BCopy average CPU ZCopy average CPU Bcopy BW ZCopy BW

Figure 7: BCopy vs ZCopy bandwidth and CPU
utilization for two simultaneous connections

BCopy vs ZCopy (4 Connections)

0

100

200

300

400

500

600

700

800

2 4 8 16 32 64 12
8

25
6

51
2

1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M

Message Size (Bytes)

B
W

 (M
B

/s
ec

)

0

100

200

300

400

500

600

C
PU

 U
til

iz
at

io
n

(%
)

BCopy average CPU ZCopy average CPU Bcopy BW ZCopy BW

Figure 8: BCopy vs ZCopy bandwidth and CPU
utilization for four simultaneous connections

Copyright 2005 IEEE

 9

BCopy vs ZCopy (8 Connections)

0

100

200

300

400

500

600

700

800

2 4 8 16 32 64 12
8

25
6

51
2 1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M

Message Size (Bytes)

B
W

 (M
B

/s
ec

)

0

100

200

300

400

500

600

C
PU

 U
til

iz
at

io
n

(%
)

BCopy average CPU ZCopy average CPU Bcopy BW ZCopy BW

Figure 9: BCopy vs ZCopy bandwidth and CPU
utilization for eight simultaneous connections

The average CPU utilization is substantially lower
with ZCopy than with BCopy. ZCopy CPU utilization
is below 50% for messages larger than 128KB, while
for BCopy all the CPUs get saturated. The aggregate
bandwidth that ZCopy is able to deliver is substantially
higher than that of BCopy. When running 8
simultaneous connections, ZCopy sustains more than
700MB/s while BCopy only delivers 500MB/s.

Presenting the same results from a different angle,
we compare the bandwidth and the CPU utilization for
64KB and 1MB messages running ZCopy and BCopy
as a function of the number of concurrent connections.

Bandwidth

0

100

200

300

400

500

600

700

800

1 2 4 8 16

Number of Concurrent Connections

B
W

 (M
B

/s
ec

)

64KB ZCopy 64KB BCopy 1MB ZCopy 1MB BCopy

Figure 10: Bandwidth, variable message size,
concurrent connections

Avereage CPU Utilization

0
50

100
150
200
250
300
350
400
450

1 2 4 8 16

Number of Concurrent Connections

CP
U

U
til

iz
at

io
n

(%
)

64KB ZCopy 64KB BCopy 1MB ZCopy 1MB BCopy

Figure 11: Average CPU utilization, variable
message size, concurrent connections

Figure 10 and Figure 11 show that for 2 or more
connections for 64KB messages, and for any number

of connections for 1MB messages, ZCopy achieves
superior bandwidth to BCopy while maintaining
significantly lower CPU utilization. While BCopy
substantially overloads the 4-CPU server (dual CPU
with HT enabled), ZCopy achieves the same results
utilizing less than 50% of a single CPU!

4.3. Per byte overhead

The per-byte overhead is measured in units of
usec/KB and is calculated as follows: Per-byte
overhead = CPU utilization / Bandwidth.
The lower the per-byte overhead, the less CPU is spent
for sending a networking message with a certain size.
Figure 12 shows the per-byte overhead for variable
message size while 1, 2 and 8 connections are active
simultaneously. Message sizes between 4 to 16 KB
represent a cross-over point where ZCopy usage
becomes more compelling than BCopy, as it requires
less CPU to deliver the same message. As the number
of concurrent connections increases, the per-byte
overhead for the BCopy path increases. This turns
ZCopy to beneficial at even smaller messages than
4KB.

Per-Byte Overhead

0.1

1

10

100

1000

2 4 8 16 32 64 12
8

25
6

51
2 1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M

Message Size (Bytes)

Pe
r-

B
yt

e
O

ve
rh

ea
d

(u
se

c/
K

B
)

Bcopy (8 processes)

Bcopy (2 processes)

Bcopy (1 process)

Zcopy (8 processes)

Zcopy (2 processes)

Zcopy (1 process)

Figure 12: Per-byte overhead

5. Future work

Multiple enhancement options for improving SDP
performance remain to be explored, including: user-
land implementation of SDP and comparison with the
kernel implementation; full implementation of
pipelined mode and usage of Write ZCopy; delayed
registration strategies may be applied for the receive
flows.

More rigorous analysis is encouraged: detailed
analysis of individual, bandwidth rather than aggregate
bandwidth and per side CPU utilization, rather than
average; more latency and bandwidth scenarios; more
CPU and cache configurations including non x86 CPU
analysis; ZCopy SDP benchmarking on data center
applications.

Copyright 2005 IEEE

 10

SDP ZCopy scalability in multiple node clusters
has to be studied. Scalability enhancements need to be
considered, such as: using Shared Receive Queues;
reducing the number of Completion Queues; tuning the
buffer allocation algorithm.

6. Conclusion

As network speeds increase, CPU copying becomes
expensive unless zero copy techniques are being used.
No matter how strong the CPU is, without zero copy it
will end up choked by copying at soaring networking
speeds.

SDP with the ZCopy path does a great job of
increasing the CPU effectiveness for application
processing.

SDP allows existing applications to transparently
utilize InfiniBand high performance capabilities
without any code changes. While existing SDP
implementations only allowed ZCopy on AIO path, we
demonstrate a portable ZCopy on the standard socket
blocking synchronous calls.

We demonstrated an approach where there is no
pin-down cache; all memory is pinned and unpinned
on each access. Caching was only used for hardware
translations.

We demonstrated benefits of utilizing the ZCopy
path for socket synchronous calls. For a single
connection, the bandwidth cross-over point between
BCopy and ZCopy occurs at a relatively large message
size. This is caused by the inability of the SDP
implementation to pipeline messages because of the
synchronous nature of blocking socket calls. Pipelining
can be achieved amongst multiple concurrent
connections. As the number of connections increases,
the cross-over point decreases down to 8KB message
size (running a handful of connections) and below. The
CPU utilization is also reduced significantly. We
believe this makes ZCopy beneficial to a wide range of
applications and systems.

System-level ZCopy threshold tuning for general
multi-tasking applications (rather than a single-
connection benchmark) achieves the best overall
system performance (aggregate bandwidth and CPU
utilization) without need for application-specific
tuning.

7. References

[1] The InfiniBand Architecture Specification, Volume 1,
Release 1.2 - www.infinibandta.org/specs

[2] D. Clark, V. Jacobson, J. Romkey, and H. Salwen, "An
Analysis of TCP Processing Overheads", IEEE

Communication Magazine, Vol. 27, No. 2, June 1989,
pp. 23 – 29.

[3] J.P.G. Sterbenz, and G. M. Parulkar, "Axon: A High-
Speed Communication Architecture for Distributed
Applications", in proc. of the 9th Annual Joint
Conference of the IEEE Computer and Communications
Societies (INFOCOM'90), Vol. II, June 1990, pp. 415–
425.

[4] Open InfiniBand Alliance – www.openib.org
[5] Mellanox InfiniBand Gold Collection –

www.mellanox.com
[6] P. Balaji, S. Narravula, K. Vaidyanathan, S.

Krishnamoorthy, J. Wu, and D. K. Panda, "Sockets
Direct Procotol over InfiniBand in Clusters: Is it
Beneficial?", in proc. of IEEE International Symposium
on Performance Analysis of Systems and Software
(ISPASS 04), Mar. 2004, pp. 28-35.

[7] V. Tipparaju, G. Santhanaraman, J. Nieplocha, and D.
K. Panda, "Host-Assisted Zero-Copy Remote Memory
Access Communication on InfiniBand", in proc. of the
18th International Parallel and Distributed Processing
Symposium (IPDPS 04), Apr. 2004.

[8] H. Tezuka, F. O'Carroll, A. Hori, and Yutaka Ishikawa,
"Pin-down Cache: A Virtual Memory Management
Technique for Zero-copy Communication", in proc. of
the 12th International Parallel Processing Symposium,
Mar. 1998, pp. 308-314.

[9] C. Bell, and D. Bonachea, "A New DMA Registration
Strategy for Pinning-Based High Performance
Networks", in proc. of the Workshop on Communication
Architecture for Clusters (CAC'03) of IPDPS 03, Apr.
2003, p. 198.1.

[10] J. Wu, P. Wyckoff, and D. K. Panda, "PVFS over
InfiniBand: Design and Performance Evaluation", in
proc. of the 32nd International Conference on Parallel
Processing (ICPP 03), Oct. 2003, pp. 125-132.

[11] Iperf – dast.nlanr.net/Projects/Iperf/
[12] S. Narravula, P. Balaji, K. Vaidyanathan, S.

Krishnamoorthy, J. Wu, and D. K. Panda, "Supporting
Strong Coherency for Active Caches in Multi-Tier
Data-Centers over InfiniBand", in proc. of the 3rd
Annual Workshop on System Area Networks (SAN 03) in
conjunction with HPCA 10, Feb. 2004.

Copyright 2005 IEEE

http://www.infinibandta.org/specs
http://www.openib.org/
http://www.mellanox.com/
http://dast.nlanr.net/Projects/Iperf/

	1. Introduction
	1.1. Introduction to InfiniBand
	1.2. Sockets Direct Protocol
	1.3. InfiniBand Gold Collection
	2. Zero Copy implementation
	2.1. Design objectives
	2.2. Pipelining and data transfer modes
	2.3. Memory registration scheme
	2.4. RDMA implementation at the data source
	2.5. RDMA implementation at the data sink
	2.6. Choosing the ZCopy threshold

	3. Benchmarking environment
	3.1. Benchmarks
	3.2. Benchmarking platform

	4. Performance results and analysis
	4.1. Single connection
	4.2. Multiple simultaneous connections
	4.3. Per byte overhead

	5. Future work
	6. Conclusion
	7. References

